SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindbäck Katrin) "

Sökning: WFRF:(Lindbäck Katrin)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dow, Christine F., et al. (författare)
  • Modeling of subglacial hydrological development following rapid supraglacial lake drainage
  • 2015
  • Ingår i: Journal of Geophysical Research - Earth Surface. - 2169-9003 .- 2169-9011. ; 120:6, s. 1127-1147
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections.
  •  
2.
  • Doyle, Sam H, et al. (författare)
  • Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet
  • 2013
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 7:1, s. 129-140
  • Tidskriftsartikel (refereegranskat)abstract
    • We present detailed records of lake discharge, ice motion and passive seismicity capturing the behaviour and processes preceding, during and following the rapid drainage of a 4 km2 supraglacial lake through 1.1-km-thick ice on the western margin of the Greenland Ice Sheet. Peak discharge of 3300 m3 s−1 coincident with maximal rates of vertical uplift indicates that surface water accessed the ice–bed interface causing widespread hydraulic separation and enhanced basal motion. The differential motion of four global positioning system (GPS) receivers located around the lake record the opening and closure of the fractures through which the lake drained. We hypothesise that the majority of discharge occurred through a 3-km-long fracture with a peak width averaged across its wetted length of 0.4 m. We argue that the fracture's kilometre-scale length allowed rapid discharge to be achieved by combining reasonable water velocities with sub-metre fracture widths. These observations add to the currently limited knowledge of in situ supraglacial lake drainage events, which rapidly deliver large volumes of water to the ice–bed interface.
  •  
3.
  • Hanna, E., et al. (författare)
  • Short- and long-term variability of the Antarctic and Greenland ice sheets
  • 2024
  • Ingår i: Nature Reviews Earth & Environment. - : Springer Nature. - 2662-138X. ; 5, s. 193-210
  • Forskningsöversikt (refereegranskat)abstract
    • The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales. 
  •  
4.
  • How, Penny, et al. (författare)
  • Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities
  • 2017
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 11, s. 2691-2710
  • Tidskriftsartikel (refereegranskat)abstract
    • Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an earlyseason episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.
  •  
5.
  • Lindbäck, Katrin, et al. (författare)
  • High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet
  • 2014
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 6:2, s. 331-338
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ice thickness and bed topography maps with a high spatial resolution (250-500 m) of a land-terminating section of the Greenland Ice Sheet derived from ground-based and airborne radar surveys. The data have a total area of similar to 12 000 km(2) and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Orkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at similar to 1600m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of Isunnguata Sermia Glacier is overdeepened and reaches an elevation of similar to 500m below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The compiled data sets of ground-based and airborne radar surveys cover one of the most studied regions of the Greenland Ice Sheet and can be valuable for detailed studies of ice sheet dynamics and hydrology. The combined data set is freely available at doi:10.1594/pangaea.830314.
  •  
6.
  • Lindbäck, Katrin (författare)
  • Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet.
  •  
7.
  •  
8.
  • Lindbäck, Katrin, et al. (författare)
  • Spectral roughness and glacial erosion of a land-terminating section of the Greenland Ice Sheet
  • 2015
  • Ingår i: Geomorphology. - : Elsevier BV. - 0169-555X .- 1872-695X. ; 238, s. 149-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectral roughness offers a significant potential for understanding the evolution of glaciated landscapes. Here, we present the first roughness study combining a high-resolution (250 to 500 m) DEM of a large land-terminating section (12,000 km2) of the Greenland Ice Sheet with the topography of the proglacial area. Subglacial roughness shows a directional dependence with consistently lower values in the ice flow direction compared to the across–flow direction. We find a correlation between low basal roughness, fast ice flow, and subglacial troughs. The northern part of the subglacial study area has an undulating topography with variable roughness, resembling the landscape in the proglacial area. In this area, there is a glacially eroded, overdeepened trough with bed elevations 510 m below sea level, consistent with warm ice and a well-lubricated bed. The southern part of the subglacial study area has higher bed elevations and higher roughness than the northern part, possibly because the bedrock consists of hard granitic gneiss as in the adjacent proglacial area. The subglacial troughs, which have been eroded to various extents, are aligned with geological weakness zones suggesting a preglacial origin. In general, there is a major geological control on the distribution of bed variability.
  •  
9.
  • Lindbäck, Katrin, et al. (författare)
  • Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard
  • 2018
  • Ingår i: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 10:4, s. 1769-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts become land-terminating. Knowledge of the subglacial topography and bathymetry under retreating glaciers is important to modelling future scenarios of fjord circulation and glacier dynamics. We present high-resolution (150m gridded) digital elevation models of subglacial topography, ice thickness, and ice surface elevation of five tidewater glaciers in Kongsfjorden (1100 km(2)), northwestern Spitsbergen, based on similar to 1700 km airborne and ground-based ice-penetrating radar profiles. The digital elevation models (DEMs) cover the tidewater glaciers Blomstrandbreen, Conwaybreen, Kongsbreen, Kronebreen, and Kongsvegen and are merged with bathymetric and land DEMs for the non-glaciated areas. The large-scale subglacial topography of the study area is characterized by a series of troughs and highs. The minimum subglacial elevation is 180m above sea level (a.s.l.), the maximum subglacial elevation is 1400m a.s.l., and the maximum ice thickness is 740m. Three of the glaciers, Kongsbreen, Kronebreen, and Kongsvegen, have the potential to retreat by similar to 10 km before they become land-terminating. The compiled data set covers one of the most studied regions in Svalbard and is valuable for future studies of glacier dynamics, geology, hydrology, and fjord circulation.
  •  
10.
  • Lindbäck, Katrin, et al. (författare)
  • Subglacial water drainage, storage, and piracy beneath the Greenland Ice Sheet
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:18, s. 7606-7614
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Meltwater drainage across the surface of the Greenland Ice Sheet (GrIS) is well constrained by measurements and modeling, yet despite its critical role, knowledge of its transit through the subglacial environment remains limited. Here we present a subglacial hydrological analysis of a land-terminating sector of the GrIS at unprecedented resolution that predicts the routing of surface-derived meltwater once it has entered the basal drainage system. Our analysis indicates the probable existence of small subglacial lakes that remain undetectable by methods using surface elevation change or radar techniques. Furthermore, the analysis suggests transient behavior with rapid switching of subglacial drainage between competing catchments driven by seasonal changes in the basal water pressure. Our findings provide a cautionary note that should be considered in studies that attempt to relate and infer future response from surface temperature, melt, and runoff from point measurements and/or modeling with measurements of proglacial discharge and ice dynamics.
  •  
11.
  • Mikkelsen, Andreas Bech, et al. (författare)
  • Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention
  • 2016
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 10:3, s. 1147-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been argued that the infiltration and retention of meltwater within firn across the percolation zone of the Greenland ice sheet has the potential to buffer up to similar to 3.6aEuro-mm of global sea-level rise (Harper et al., 2012). Despite evidence confirming active refreezing processes above the equilibrium line, their impact on runoff and proglacial discharge has yet to be assessed. Here, we compare meteorological, melt, firn stratigraphy and discharge data from the extreme 2010 and 2012 summers to determine the relationship between atmospheric forcing and melt runoff at the land-terminating Kangerlussuaq sector of the Greenland ice sheet, which drains into the Watson River. The 6.8aEuro-km(3) bulk discharge in 2012 exceeded that in 2010 by 28aEuro-%, despite only a 3aEuro-% difference in net incoming melt energy between the two years. This large disparity can be explained by a 10aEuro-% contribution of runoff originating from above the long-term equilibrium line in 2012 caused by diminished firn retention. The amplified 2012 response was compounded by catchment hypsometry; the disproportionate increase in area contributing to runoff as the melt-level rose high into the accumulation area. Satellite imagery and aerial photographs reveal an extensive supraglacial network extending 140aEuro-km from the ice margin that confirms active meltwater runoff originating well above the equilibrium line. This runoff culminated in three days with record discharge of 3100aEuro-m(3)aEuro-s(-1) (0.27aEuro-GtaEuro-d(-1)) that peaked on 11 July and washed out the Watson River Bridge. Our findings corroborate melt infiltration processes in the percolation zone, though the resulting patterns of refreezing are complex and can lead to spatially extensive, perched superimposed ice layers within the firn. In 2012, such layers extended to an elevation of at least 1840aEuro-m and provided a semi-impermeable barrier to further meltwater storage, thereby promoting widespread runoff from the accumulation area of the Greenland ice sheet that contributed directly to proglacial discharge and global sea-level rise.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy