SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindberg Frida A.) "

Sökning: WFRF:(Lindberg Frida A.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ceder, Mikaela M., et al. (författare)
  • The Fly Homologue of MFSD11 Is Possibly Linked to Nutrient Homeostasis and Has a Potential Role in Locomotion : A First Characterization of the Atypical Solute Carrier CG18549 in Drosophila Melanogaster
  • 2021
  • Ingår i: Insects. - : MDPI. - 2075-4450. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular transport and function are dependent on substrate influx and efflux of various compounds. In humans, the largest superfamily of transporters is the SoLute Carriers (SLCs). Many transporters are orphans and little to nothing is known about their expression and/or function, yet they have been assigned to a cluster called atypical SLCs. One of these atypical SLCs is MFSD11. Here we present a first in-depth characterization of the MFSD11, CG18549. By gene expression and behavior analysis on ubiquitous and brain-specific knockdown flies. CG18549 knockdown flies were found to have altered adipokinetic hormone and adipokinteic hormone receptor expression as well as reduced vesicular monoamine transporter expression; to exhibit an altered locomotor behavior, and to have an altered reaction to stress stimuli. Furthermore, the gene expression of CG18549 in the brain was visualized and abundant expression in both the larvae and adult brain was observed, a result that is coherent with the FlyAtlas Anatomy microarray. The exact mechanism behind the observed behaviors is not fully understood, but this study provides new insights into the expression and function of CG18549. Clearly, these results provide a strong example as to why it is vital to fully characterize orphan transporters and through that gain knowledge about the body during normal condition and disease.
  •  
2.
  • Fredriksson, Robert, et al. (författare)
  • The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain.
  • 2019
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling.
  •  
3.
  • Lekholm, Emilia, et al. (författare)
  • Putative Membrane-Bound Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability
  • 2017
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of orphan transporters is of importance due to their involvement in cellular homeostasis but also in pharmacokinetics and pharmacodynamics. The tissue and cellular localization, as well as function, is still unknown for many of the solute carriers belonging to the major facilitator superfamily (MFS) Pfam clan. Here, we have characterized two putative novel transporters MFSD14A (HIAT1) and MFSD14B (HIATL1) in the mouse central nervous system and found protein staining throughout the adult mouse brain. Both transporters localized to neurons and MFSD14A co-localized with the Golgi marker Giantin in primary embryonic cortex cultures, while MFSD14B staining co-localized with an endoplasmic retention marker, KDEL. Based on phylogenetic clustering analyses, we predict both to have organic substrate profiles, and possible involvement in energy homeostasis. Therefore, we monitored gene regulation changes in mouse embryonic primary cultures after amino acid starvations and found both transporters to be upregulated after 3 h of starvation. Interestingly, in mice subjected to 24 h of food starvation, both transporters were downregulated in the hypothalamus, while Mfsdl4a was also downregulated in the brainstem. In addition, in mice fed a high fat diet (HFD), upregulation of both transporters was seen in the striatum. Both MFSD14A and MFSD14B were intracellular neuronal membrane bound proteins, expressed in the Golgi and Endoplasmic reticulum, affected by both starvation and HFD to varying degree in the mouse brain.
  •  
4.
  • Lindberg, Frida A, et al. (författare)
  • Behavioral profiling of SLC38A10 knockout mice using the multivariate concentric square field™ test
  • 2022
  • Ingår i: Frontiers in Behavioral Neuroscience. - : Frontiers Media S.A.. - 1662-5153. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: SLC38A10 is a gene that encodes the SLC38A10 protein, also known as SNAT10. The SLC38 family is evolutionary old, and SLC38A10 is one of the oldest members of the family. It is ubiquitously expressed, and its substrates are glutamine, glutamate, alanine, aspartate, and serine. However, little is known about its biological importance.Methods: In the current study, an SLC38A10 knockout mouse was run in the multivariate concentric square field (TM) (MCSF) test. The MCSF test gives the mouse a choice of areas to explore; sheltered areas, elevated and illuminated areas, or open spaces, and a behavioral profile is obtained. The multivariate data obtained were analyzed (i) for each parameter, (ii) parameters grouped into functional categories, and (iii) with a principal component analysis.Results: In the trend analysis, knockout mice had a decreased exploratory behavior compared to controls but did not show a distinct grouping in the principal component analysis.Discussion: There was not a pronounced difference in the behavioral profile in SLC38A10 knockout mice compared to their wild-type controls, although subtle alterations in zones associated with exploratory behavior and risk assessment in female and male knockout mice, respectively, could be observed. These results imply that a loss of function of the SLC38A10 protein in mice does not drastically alter behavior in the MSCF test.
  •  
5.
  • Lindberg, Frida A, et al. (författare)
  • SLC38A10 deficiency in male mice affect plasma levels of threonine and histidine
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed in order to fully understand their function and possible role as therapeutic targets. SLC38 is a family of amino acid transporters, commonly referred to as SNATs, consisting of 11 members. The tenth member, SLC38A10, is one of the least characterized members and is the focus of this study. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of whole brain and found seven differentially expressed genes in SLC38A10 deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in males, while no amino acids were altered in females, suggesting that SLC38A10-/- might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in brain, liver, lung, muscle and kidney, but no differences were found. A relative telomere length measurement was also made, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in whole brain. 
  •  
6.
  • Lindberg, Frida A., et al. (författare)
  • SLC38A10 Deficiency in Mice Affects Plasma Levels of Threonine and Histidine in Males but Not in Females : A Preliminary Characterization Study of SLC38A10(-/-) Mice
  • 2023
  • Ingår i: Genes. - : MDPI. - 2073-4425. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed to fully understand their function and possible role as therapeutic targets. SLC38A10, a poorly characterized solute carrier, is preliminary characterized here. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of the whole brain and found seven differentially expressed genes in SLC38A10-deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in knockout males, whereas no amino acid levels were affected in females, suggesting that SLC38A10(-/-) might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in the brain, liver, lung, muscle, and kidney, but no differences were found. Relative telomere length measurement was also taken, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in the whole brain.
  •  
7.
  • Lindberg, Frida A., et al. (författare)
  • SLC38A10 knockout mice display a decreased body weight and an increased risk-taking behavior in the open field test
  • 2022
  • Ingår i: Frontiers in Behavioral Neuroscience. - : Frontiers Media S.A.. - 1662-5153. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • The solute carrier 38 family (SLC38) is a family of 11 members. The most commonsubstrate among these are alanine and glutamine, and members are present in a widerange of tissues with important functions for several biological processes, such as liverand brain function. Some of these transporters are better characterized than others and,in this paper, a behavioral characterization of SLC38A10−/− mice was carried out. Abattery of tests for general activity, emotionality, motor function, and spatial memorywere used. Among these tests, the elevated plus maze, Y-maze, marble burying, andchallenging beamwalk have not been tested on the SLC38A10−/− mice previously, whilethe open field and the rotarod tests have been performed by the International MousePhenotyping Consortium (IMPC). Unlike the results from IMPC, the results from this studyshowed that SLC38A10−/− mice spend less time in the wall zone in the open field testthan WT mice, implying that SLC38A10-deficient mice have an increased explorativebehavior, which suggests an important function of SLC38A10 in brain. The present studyalso confirmed IMPC’s data regarding rotarod performance and weight, showing thatSLC38A10−/− mice do not have an affected motor coordination impairment and havea lower body weight than both SLC38A10+/− and SLC38A10+/+ mice. These resultsimply that a complete deficiency of the SLC38A10 protein might affect body weighthomeostasis, but the underlying mechanisms needs to be studied further.
  •  
8.
  • Lindberg, Frida A. (författare)
  • The Biological Importance of the Amino Acid Transporter SLC38A10 : Characterization of a Knockout Mouse
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The biggest group of transporters, the solute carriers (SLCs), has more than 400 members, and about 30% of these are still orphan. In order to decipher their biological function and possible role in disease, there is a need for characterization of these. Around 25% of SLCs are estimated to have amino acids as substrates, including transporters belonging to the SLC38 family. The SLC38 members are sometimes referred to their alternative name: sodium-coupled neutral amino acid transporters (SNATs). One of these transporters, SNAT10 (or SLC38A10), has been characterized as a bidirectional transporter of glutamate, glutamine, alanine and aspartate, as well as having an efflux of serine, and is ubiquitously expressed in the body. However, its biological importance is not yet understood. The aim with this thesis was to characterize a mouse model deficient in SNAT10 protein in order to find the biological importance of this transporter. In paper I, this is done by using a series of behavioral tests, including the open field test, elevated plus maze, rotarod and Y-maze, among others. The SNAT10 knockout mouse was found to have an increased risk-taking behavior, but no motor or spatial working memory impairments. Furthermore, the knockout mouse was found to have a decreased body weight. In paper II, an additional behavioral characterization was performed by using the multivariate concentric square field™ (MCSF) test. The MCSF test is an arena with different zones associated to different behavioral traits, which generates a behavioral profile depending on where the mouse spends its time. The result from this test implies that the SNAT10 deficient mouse has a lower explorative behavior than its wild type littermates. In paper III, gene expression was studied in whole brain and some genes related to cell cycle regulation and p53 expression were found to be differentially expressed in the knockout brain. Additional gene expression was studied in kidney, liver, lung and muscle, but no changes were found. Plasma levels of histidine and threonine were altered in males, but no altered amino acid levels were found in knockout females, suggesting a possible sex-specific effect. These studies together imply that SNAT10 might be involved in processes related to risk-taking and explorative behavior in the open field and MCSF tests. SNAT10 deficiency also affected amino acid levels in plasma, indicating a disrupted amino acid homeostasis.
  •  
9.
  • Lindberg, Frida W., et al. (författare)
  • Controlled Surface Silanization for Actin-Myosin and Biocompatibility of New Polymer Resists
  • 2018
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 34:30, s. 8777-8784
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular motor-based nanodevices require organized cytoskeletal filament guiding along motility-promoting tracks, confined by motility-inhibiting walls. One way to enhance motility quality on the tracks, particularly in terms of filament velocity but also the fraction of motile filaments, is to optimize the surface hydrophobicity. We have investigated the potential to achieve this for the actin myosin II motor system on trimethylchlorosilane (TMCS)-derivatized SiO2 surfaces to be used as channel floors in nanodevices. We have also investigated the ability to supress motility on two new polymer resists, TU7 (for nanoimprint lithography) and CSAR 62 (for electron beam and deep UV lithography), to be used as channel walls. We developed a chemical-vapor deposition tool for silanizing SiO2 surfaces in a controlled environment to achieve different surface hydrophobicities (measured by water contact angle). In contrast to previous work, we were able to fabricate a wide range of contact angles by varying the silanization time and chamber pressure using only one type of silane. This resulted in a significant improvement of the silanization procedure, producing a predictable contact angle on the surface and thereby predictable quality of the heavy meromyosin (HMM)-driven actin motility with regard to velocity. We observed a high degree of correlation between the filament sliding velocity and contact angle in the range 10-86 degrees, expanding the previously studied range. We found that the sliding velocity on TU7 surfaces was superior to that on CSAR 62 surfaces despite similar contact angles. In addition, we were able to suppress the motility on both TU7 and CSAR 62 by plasma oxygen treatment before silanization. These results are discussed in relation to previously proposed surface adsorption mechanisms of HMM and their relationship to the water contact angle. Additionally, the results are considered for the development of actin-myosin based nanodevices with superior performance with respect to actin-myosin functionality.
  •  
10.
  •  
11.
  • Lindberg, Frida W., et al. (författare)
  • Design and development of nanoimprint-enabled structures for molecular motor devices
  • 2019
  • Ingår i: Materials Research Express. - : IOP Publishing. - 2053-1591. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Devices based on molecular motor-driven cytoskeletal filaments, e.g., actin filaments, have been developed both for biosensing and biocomputational applications. Commonly, these devices require nanoscaled tracks for guidance of the actin filaments which has limited the patterning technique to electron beam lithography. Thus, large scale systems become intractable to fabricate at a high throughput within a reasonable time-frame. We have studied the possibility to fabricate molecular motor-based devices using the high throughput, high resolution technique of nanoimprint lithography. Molecular motor-based devices require wide open regions (loading zones) to allow filaments to land for later propulsion into the nanoscale tracks. Such open zones are challenging to fabricate using nanoimprint lithography due to the large amount of material displaced in the process. We found that this challenge can be overcome by introducing nanoscaled pillars inside the loading zones, into which material can be displaced during imprint. By optimising the resist thickness, we were able to decrease the amount of material displaced without suffering from insufficient filling of the stamp. Furthermore, simulations suggest that the shape and positioning of the pillars can be used to tailor the overall cytoskeletal filament transportation direction and behaviour. This is a potentially promising design feature for future applications that however, requires further optimisations before experimental realisation.
  •  
12.
  • Rahman, Mohammad A., et al. (författare)
  • Regeneration of Assembled, Molecular-Motor-Based Bionanodevices
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 19:10, s. 7155-7163
  • Tidskriftsartikel (refereegranskat)abstract
    • The guided gliding of cytoskeletal filaments, driven by biomolecular motors on nano/microstructured chips, enables novel applications in biosensing and biocomputation. However, expensive and time-consuming chip production hampers the developments. It is therefore important to establish protocols to regenerate the chips, preferably without the need to dismantle the assembled microfluidic devices which contain the structured chips. We here describe a novel method toward this end. Specifically, we use the small, nonselective proteolytic enzyme, proteinase K to cleave all surface-adsorbed proteins, including myosin and kinesin motors. Subsequently, we apply a detergent (5% SDS or 0.05% Triton X100) to remove the protein remnants. After this procedure, fresh motor proteins and filaments can be added for new experiments. Both, silanized glass surfaces for actin-myosin motility and pure glass surfaces for microtubule-kinesin motility were repeatedly regenerated using this approach. Moreover, we demonstrate the applicability of the method for the regeneration of nano/microstructured silicon-based chips with selectively functionalized areas for supporting or suppressing gliding motility for both motor systems. The results substantiate the versatility and a promising broad use of the method for regenerating a wide range of protein-based nano/microdevices.
  •  
13.
  • Salhotra, Aseem, et al. (författare)
  • Exploitation of Engineered Light-Switchable Myosin XI for Nanotechnological Applications
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 17:17, s. 17233-17244
  • Tidskriftsartikel (refereegranskat)abstract
    • For certain nanotechnological applications of the contractile proteins actin and myosin, e.g., in biosensing and network-based biocomputation, it would be desirable to temporarily switch on/off motile function in parts of nanostructured devices, e.g., for sorting or programming. Myosin XI motor constructs, engineered with a light-switchable domain for switching actin motility between high and low velocities (light-sensitive motors (LSMs) below), are promising in this regard. However, they were not designed for use in nanotechnology, where longevity of operation, long shelf life, and selectivity of function in specific regions of a nanofabricated network are important. Here, we tested if these criteria can be fulfilled using existing LSM constructs or if additional developments will be required. We demonstrated extended shelf life as well as longevity of the actin-propelling function compared to those in previous studies. We also evaluated several approaches for selective immobilization with a maintained actin propelling function in dedicated nanochannels only. Whereas selectivity was feasible using certain nanopatterning combinations, the reproducibility was not satisfactory. In summary, the study demonstrates the feasibility of using engineered light-controlled myosin XI motors for myosin-driven actin transport in nanotechnological applications. Before use for, e.g., sorting or programming, additional work is however needed to achieve reproducibility of the nanofabrication and, further, optimize the motor properties.
  •  
14.
  • Tripathi, Rekha, PhD student, 1985-, et al. (författare)
  • SLC38A10 Regulate Glutamate Homeostasis and Modulate the AKT/TSC2/mTOR Pathway in Mouse Primary Cortex Cells
  • 2022
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media S.A.. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutamate acts as a critical regulator of neurotransmitter balance, recycling, synaptic function and homeostasis in the brain and glutamate transporters control glutamate levels in the brain. SLC38A10 is a member of the SLC38 family and regulates protein synthesis and cellular stress responses. Here, we uncover the role of SLC38A10 as a transceptor involved in glutamate-sensing signaling pathways that control both the glutamate homeostasis and mTOR-signaling. The culture of primary cortex cells from SLC38A10 knockout mice had increased intracellular glutamate. In addition, under nutrient starvation, KO cells had an impaired response in amino acid-dependent mTORC1 signaling. Combined studies from transcriptomics, protein arrays and metabolomics established that SLC38A10 is involved in mTOR signaling and that SLC38A10 deficient primary cortex cells have increased protein synthesis. Metabolomic data showed decreased cholesterol levels, changed fatty acid synthesis, and altered levels of fumaric acid, citrate, 2-oxoglutarate and succinate in the TCA cycle. These data suggests that SLC38A10 may act as a modulator of glutamate homeostasis, and mTOR-sensing and loss of this transceptor result in lower cholesterol, which could have implications in neurodegenerative diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (12)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Lindberg, Frida A. (9)
Fredriksson, Robert (8)
Månsson, Alf (5)
Rahman, Mohammad A (5)
Linke, Heiner (5)
Salhotra, Aseem (4)
visa fler...
Perland, Emelie (2)
Takatsuki, Hideyo (2)
Korten, Till (2)
Hellsten, Sofie V (2)
Norrby, Marlene (2)
Nordenankar, Karin, ... (2)
Eriksson, Anders (1)
Graczyk, Mariusz (1)
Maximov, Ivan (1)
Bergquist, Jonas (1)
Moazzami, Ali (1)
Schiöth, Helgi B. (1)
Shevchenko, Ganna (1)
Aggarwal, Tanya (1)
Nordin, Karin (1)
Williams, Michael J. (1)
Olszewski, Pawel K. (1)
Alsiö, Johan (1)
Olivo, Gaia, MD, 198 ... (1)
Roman, Erika (1)
Nordenankar, Karin (1)
Klemm, Anna H (1)
Rostami, Jinar (1)
Kullander, Klas, 196 ... (1)
Ušaj, Marko, Researc ... (1)
Meinecke, Christoph ... (1)
Jeppesen, Sören (1)
Lyttleton, Roman W. (1)
Hägglund, Maria G. (1)
Fredriksson, Robert, ... (1)
Ceder, Mikaela M. (1)
Lekholm, Emilia (1)
Todkar, Aniruddha (1)
Sreedharan, Smitha, ... (1)
Hutchinson, Ashley (1)
Roshanbin, Sahar, 19 ... (1)
Ciuculete, Diana M (1)
Klockars, Anica (1)
Hindlycke, Viktoria (1)
Västermark, Åke, 198 ... (1)
K, Cheng (1)
Löfstrand, Anette (1)
Tripathi, Rekha, PhD ... (1)
Surendiran, Pradheeb ... (1)
visa färre...
Lärosäte
Uppsala universitet (9)
Lunds universitet (4)
Linnéuniversitetet (4)
Kungliga Tekniska Högskolan (2)
Sveriges Lantbruksuniversitet (2)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (7)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy