SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindholm Cecilia K) "

Sökning: WFRF:(Lindholm Cecilia K)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Annerén, Cecilia, et al. (författare)
  • The FRK/RAK-SHB signaling cascade : a versatile signal-transduction pathway that regulates cell survival, differentiation and profileration
  • 2003
  • Ingår i: Current molecular medicine. - : Bentham. - 1566-5240 .- 1875-5666. ; 3:4, s. 313-324
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experiments have unravelled novel signal transduction pathways that involve the SRC homology 2 (SH2) domain adapter protein SHB. SHB is ubiquitously expressed and contains proline rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites and an SH2 domain and serves a role in generating signaling complexes in response to tyrosine kinase activation. SHB mediates certain responses in platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. Upstream of SHB in some cells lies the SRC-like FYN-Related Kinase FRK / RAK (also named BSK / IYK or GTK). FRK / RAK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and β-cells, where they both induce PC12 cell differentiation and β-cell proliferation. Furthermore, β-cell apoptosis is augmented by these proteins under conditions that cause β-cell degeneration. The FRK / RAK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2.Besides regulating apoptosis, proliferation and differentiation, SHB is also a component of the T cell receptor (TCR) signaling response. In Jurkat T cells, SHB links several signaling components with the TCR and is thus required for IL-2 production. In endothelial cells, SHB both promotes apoptosis under conditions that are anti-angiogenic, but is also required for proper mitogenicity, spreading and tubular morphogenesis. In embryonic stem cells, dominant-negative SHB (R522K) prevents early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon, suggesting a role of SHB in development.In summary, SHB is a versatile signal transduction molecule that produces diverse biological responses in different cell types under various conditions. SHB operates downstream of GTK in cells that express this kinase.
  •  
3.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
4.
  •  
5.
  • Lindholm, Cecilia K, et al. (författare)
  • Requirement of the Src homology 2 domain protein Shb for T cell receptor-dependent activation of the Interleukin-2 gene nuclear factor for activation of T cells element in Jurkat T cells
  • 1999
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 274:39, s. 28050-28057
  • Tidskriftsartikel (refereegranskat)abstract
    • Stimulation of the T cell antigen receptor (TCR) induces tyrosine phosphorylation of numerous intracellular proteins. We have recently investigated the role of the adaptor protein Shb in the early events of T cell signaling and observed that Shb associates with Grb2, linker for activation of T cells (LAT) and the TCR zeta-chain in Jurkat cells. We now report that Shb also associates with phospholipase C-gamma1 (PLC-gamma1) in these cells. Overexpression of Src homology 2 domain defective Shb caused diminished phosphorylation of LAT and consequently the activation of mitogen-activated protein kinases was decreased upon TCR stimulation. In addition, the Shb mutant also blocked phosphorylation of PLC-gamma1 and the increase in cytoplasmic Ca(2+) following TCR stimulation. Nuclear factor for activation of T cells is a major target for Ras and calcium signaling pathways in T cells following TCR stimulation, and the overexpression of the mutant Shb prevented TCR-dependent activation of the nuclear factor for activation of T cells. Consequently, endogenous interleukin-2 production was decreased under these conditions. The results indicate a role for Shb as a link between the TCR and downstream signaling events involving LAT and PLC-gamma1 and resulting in the activation of transcription of the interleukin-2 gene.
  •  
6.
  • Lindholm, Cecilia K, et al. (författare)
  • Shb links SLP-76 and Vav with the CD3 complex in Jurkat T cells
  • 2002
  • Ingår i: European Journal of Biochemistry. - : Wiley. - 0014-2956 .- 1432-1033. ; 269:13, s. 3279-3288
  • Tidskriftsartikel (refereegranskat)abstract
    • This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76–Gads–Vav complex to the T cell receptor ζ-chain and ZAP70.
  •  
7.
  • Lindholm, Cecilia K, et al. (författare)
  • Shf, a Shb-like Adapter protein, Is Involved in PDGF-a-receptor Regulation of Apoptosis
  • 2000
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 278:3, s. 537-543
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent work has implicated the importance of adapter proteins in signal transduction. To identify homologues of the previously identified adapter protein Shb, database searches were performed. A Shb-like protein was found which we have named Shf. Shf contains an SH2 domain and four putative tyrosine phosphorylation sites and is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. The SH2 domain of Shf bound to the PDGF-alpha-receptor at tyrosine-720, but not to the PDGF-beta-receptor in PAE cells. Pervanadate induced tyrosine phosphorylation of Shf in NIH3T3 fibroblasts overexpressing this protein, whereas PDGF-AA alone had no detectable effect. NIH3T3 cells overexpressing Shf displayed significantly lower rates of apoptosis than control cells in the presence of PDGF-AA. Our findings suggest a role for the novel adapter Shf in PDGF-receptor signaling and regulation of apoptosis.
  •  
8.
  • Windahl, Sara H, 1971, et al. (författare)
  • Identification of Target Cells for the Genomic Effects of Estrogens in Bone
  • 2007
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 148:12, s. 5688-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen has bone protective effects, but the exact mechanism behind these effects remains unclear. The aim of the present study was to identify the primary target cells in bone for the classical genomic effects of estrogens in vivo. For this purpose we have used reporter mice with a luciferase gene under the control of three estrogen-responsive elements (EREs), enabling detection of in vivo activation of gene transcription. Three-month-old ovariectomized mice were treated with a single dose (50microg/kg) 17beta-estradiol (E2). Luciferase activity was analysed in several tissues and in different bone marrow-derived lymphocyte enriched/depleted preparations using MacsMouse CD19 (for B lymphocytes) or CD90 (for T lymphocytes) MicroBeads. Histological characterization of cells with high luciferase content was performed using immunohistochemistry. Both cortical bone and bone marrow displayed a rapid (within 1h) and pronounced E2-induced increase in luciferase activity. The luciferase activity in total bone marrow and in bone marrow depleted of lymphocytes was increased 6-8 times more than in either B lymphocyte and T lymphocyte enriched cell fractions 4h after the E2-injection, demonstrating that mature lymphocytes are not major direct targets for the genomic effect of estrogens in bone. Immunohistochemistry identified clear luciferase staining in hypertrophic growth plate chondrocytes, megakaryocytes, osteoblasts and lining cells, while no staining was seen in proliferative chondrocyte. Although most of the osteocytes did not display any detectable luciferase staining, a subpopulation of osteocytes both in cortical and trabecular bone stained positive for luciferase. In conclusion, hypertrophic growth plate chondrocytes, megakaryocytes, osteoblasts, lining cells and a subpopulation of osteocytes were identified to respond to estrogen via the classical ERE-mediated genomic pathway in bone. Furthermore, our findings indicate that possible direct estrogenic effects on the majority of osteocytes, not staining positive for luciferase, on proliferative chondrocytes and on mature lymphocytes are mediated by non-ERE actions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
annan publikation (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Fick, Jerker (1)
Vertessy, Beata G. (1)
Boeing, Heiner (1)
visa fler...
Franks, Paul (1)
Wang, Mei (1)
Nilsson, Peter (1)
Wang, Xin (1)
Lyssenko, Valeriya (1)
Tuomi, Tiinamaija (1)
Groop, Leif (1)
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Fadista, Joao (1)
Salomaa, Veikko (1)
Pettersson, K (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
Lind, Lars (1)
van der Goot, F. Gis ... (1)
Melander, Olle (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Ohlsson, Claes, 1965 (1)
Swärd, Karl (1)
Nilsson, Per (1)
De Milito, Angelo (1)
Lindholm, Eero (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Inzunza, J (1)
Kågedal, Katarina (1)
Palli, Domenico (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Navarro, Carmen (1)
Wareham, Nicholas J. (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
visa färre...
Lärosäte
Uppsala universitet (6)
Umeå universitet (3)
Karolinska Institutet (3)
Stockholms universitet (2)
Lunds universitet (2)
Göteborgs universitet (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (7)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy