SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linnarsson Sten) "

Sökning: WFRF:(Linnarsson Sten)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Woll, Petter S, et al. (författare)
  • Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 25:6, s. 794-808
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.
  •  
2.
  • Borgström, Erik, 1985- (författare)
  • Technologies for Single Cell Genome Analysis
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • During the last decade high throughput DNA sequencing of single cells has evolved from an idea to one of the most high profile fields of research. Much of this development has been possible due to the dramatic reduction in costs for massively parallel sequencing. The four papers included in this thesis describe or evaluate technological advancements for high throughput DNA sequencing of single cells and single molecules.As the sequencing technologies improve, more samples are analyzed in parallel. In paper 1, an automated procedure for preparation of samples prior to massively parallel sequencing is presented. The method has been applied to several projects and further development by others has enabled even higher sample throughputs. Amplification of single cell genomes is a prerequisite for sequence analysis. Paper 2 evaluates four commercially available kits for whole genome amplification of single cells. The results show that coverage of the genome differs significantly among the protocols and as expected this has impact on the downstream analysis. In Paper 3, single cell genotyping by exome sequencing is used to confirm the presence of fat cells derived from donated bone marrow within the recipients’ fat tissue. Close to hundred single cells were exome sequenced and a subset was validated by whole genome sequencing. In the last paper, a new method for phasing (i.e. determining the physical connection of variant alleles) is presented. The method barcodes amplicons from single molecules in emulsion droplets. The barcodes can then be used to determine which variants were present on the same original DNA molecule. The method is applied to two variable regions in the bacterial 16S gene in a metagenomic sample.Thus, two of the papers (1 and 4) present development of new methods for increasing the throughput and information content of data from massively parallel sequencing. Paper 2 evaluates and compares currently available methods and in paper 3, a biological question is answered using some of these tools.
  •  
3.
  • Boström, Johan, et al. (författare)
  • Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchro-nized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
  •  
4.
  • Braun, Emelie, et al. (författare)
  • Comprehensive cell atlas of the first-trimester developing human brain
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 382:6667, s. 172-
  • Tidskriftsartikel (refereegranskat)abstract
    • The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre–oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.
  •  
5.
  • Haniffa, Muzlifah, et al. (författare)
  • A roadmap for the Human Developmental Cell Atlas
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 597:7875, s. 196-205
  • Tidskriftsartikel (refereegranskat)abstract
    • This Perspective outlines the Human Developmental Cell Atlas initiative, which uses state-of-the-art technologies to map and model human development across gestation, and discusses the early milestones that have been achieved. The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.
  •  
6.
  • Haring, Martin, et al. (författare)
  • Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types
  • 2018
  • Ingår i: Nature Neuroscience. - : NATURE PUBLISHING GROUP. - 1097-6256 .- 1546-1726. ; 21:6, s. 869-880
  • Tidskriftsartikel (refereegranskat)abstract
    • The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.
  •  
7.
  • Kühnemund, Malte (författare)
  • Single Molecule Detection : Microfluidic Automation and Digital Quantification
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Much of recent progress in medical research and diagnostics has been enabled through the advances in molecular analysis technologies, which now permit the detection and analysis of single molecules with high sensitivity and specificity. Assay sensitivity is fundamentally limited by the efficiency of the detection method used for read-out. Inefficient detection systems are usually compensated for by molecular amplification at the cost of elevated assay complexity.This thesis presents microfluidic automation and digital quantification of targeted nucleic acid detection methods based on padlock and selector probes and rolling circle amplification (RCA). In paper I, the highly sensitive, yet complex circle-to-circle amplification assay was automated on a digital microfluidic chip. In paper II, a new RCA product (RCP) sensing principle was developed based on resistive pulse sensing that allows label free digital RCP quantification. In paper III, a microfluidic chip for spatial RCP enrichment was developed, which enables the detection of RCPs with an unprecedented efficiency and allows for deeper analysis of enriched RCPs through next generation sequencing chemistry. In paper IV, a smart phone was converted into a multiplex fluorescent imaging device that enables imaging and quantification of RCPs on slides as well as within cells and tissues. KRAS point mutations were detected (i) in situ, directly in tumor tissue, and (ii) by targeted sequencing of extracted tumor DNA, imaged with the smart phone RCP imager. This thesis describes the building blocks required for the development of highly sensitive low-cost RCA-based nucleic acid analysis devices for utilization in research and diagnostics.
  •  
8.
  • La Manno, Gioele, et al. (författare)
  • Molecular architecture of the developing mouse brain
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 596:7870, s. 92-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions(1-8), the whole adult brain(9) and even entire embryos(10). Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system. A comprehensive single-cell transcriptomic atlas of the mouse brain between gastrulation and birth identifies hundreds of cellular states and reveals the spatiotemporal organization of brain development.
  •  
9.
  • Lázár, Enikő, et al. (författare)
  • Spatial Dynamics of the Developing Human Heart
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Heart development relies on a topologically defined interplay between a diverse array of cardiac cells. We finely curated spatial and single-cell measurements with subcellular imaging-based transcriptomics validation to explore spatial dynamics during early human cardiogenesis. Analyzing almost 80,000 individual cells and 70,000 spatially barcoded tissue regions between the 5.5th and 14th postconceptional weeks, we identified 31 coarse- and 72 fine-grained cell states and mapped them to highly resolved cardiac cellular niches. We provide novel insight into the development of the cardiac pacemaker-conduction system, heart valves, and atrial septum, and decipher heterogeneity of the hitherto elusive cardiac fibroblast population. Furthermore, we describe the formation of cardiac autonomic innervation and present the first spatial account of chromaffin cells in the fetal human heart. In summary, our study delineates the cellular and molecular landscape of the developing heart’s architecture, offering links to genetic causes of heart disease.
  •  
10.
  • Li, Xiaofei, et al. (författare)
  • Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin
  • 2023
  • Ingår i: Nature Neuroscience. - : Springer Nature. - 1097-6256 .- 1546-1726. ; 26:5, s. 891-901
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors created a comprehensive developmental cell atlas for spatiotemporal gene expression of the human spinal cord, revealed species-specific regulation during development and used the atlas to infer novel markers for pediatric ependymomas. The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.
  •  
11.
  • Linnarsson, Sten, et al. (författare)
  • METHODS FOR PROFILING MOLECULES WITH AN OBJECTIVE FUNCTION
  • 2003. - 18
  • Patent (populärvet., debatt m.m.)abstract
    • Methods relating to profiling and/or identifying molecules in a sample, particularly chemical or biological molecules contained in an experimental sample using measured data about molecules actually present and known information about candidate molecules that may be present. Information tags can be assigned to candidates. This may be achieved with a high degree of accuracy and a low false positive rate by minimising the effect of one or more possible sources of error. An objective goal (assignment) may be optimised by linear programming or by mixed integer programming
  •  
12.
  • Linnarsson, Sten (författare)
  • Neurotrophic factors and neuronal plasticity
  • 2001
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The neurotrophic factors were originally discovered because of their ability to rescue neurons during a period of naturally occurring programmed cell death. This gave rise to the neurotrophic factor hypothesis which states that specific target-derived factors protect and support subpopulations of innervating neurons, thereby regulating the pattern and quantity of innervation properly for each target tissue. In recent years it has been realized that neurotrophic factors can also induce or modulate neuronal plasticity, such as the synaptic potentiation, synaptogenesis and neuropil growth thought to be the molecular basis of many forms of learning and memory. This thesis shows that brain-derived neurotrophic factor (BDNF) has many previously unknown functions in the adult brain. A direct involvement in memory acquisition is shown by the fact that lowering BDNF levels causes a spatial learning defect. Moreover, it is shown that BDNF is required for the proper development of the dentate gyrus and for the survival or proper maturation of adult neural stem cells. A direct action of BDNF on Reelin, a protein responsible for inducing normal cortical lamination, is demonstrated and shown to cause a reeler-like phenotype in BDNF-overexpressing mice. Finally, the transcriptional program in response to glial cell line-derived neurotrophic factor (GDNF) is explored, revealing that this neurotrophic factor, too, affects neuronal plasticity. Several classes of genes responded to GDNF, including a large set of genes involved in cellular morphology and neurite growth, several genes related to translation and Sox10, itself a regulator of Ret (a GDNF receptor). In conclusion, this thesis demonstrates a variety of effects of the neurotrophic factors GDNF and BDNF in the postnatal nervous system, and begins to suggest that the most important functions of these proteins may not be as survival factors but as plasticity modulators.
  •  
13.
  • Niklasson, Mia, et al. (författare)
  • Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses
  • 2017
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 77:7, s. 1741-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstreamsignaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas.
  •  
14.
  • Romanov, Roman A., et al. (författare)
  • A secretagogin locus of the mammalian hypothalamus controls stress hormone release
  • 2015
  • Ingår i: EMBO Journal. - : EMBO. - 0261-4189 .- 1460-2075. ; 34:1, s. 36-54
  • Tidskriftsartikel (refereegranskat)abstract
    • A hierarchical hormonal cascade along the hypothalamic-pituitary-adrenal axis orchestrates bodily responses to stress. Although corticotropin-releasing hormone (CRH), produced by parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the portal circulation at the median eminence, is known to prime downstream hormone release, the molecular mechanism regulating phasic CRH release remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin's Ca2+ sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Pharmacological tools combined with RNA interference demonstrate that secretagogin's loss of function occludes adrenocorticotropic hormone release from the pituitary and lowers peripheral corticosterone levels in response to acute stress. Cumulatively, these data define a novel secretagogin neuronal locus and molecular axis underpinning stress responsiveness.
  •  
15.
  • Romanov, Roman A., et al. (författare)
  • Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes
  • 2017
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 20:2, s. 176-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of. hypothalamic organization and function.
  •  
16.
  • Ruetz, Tyson, et al. (författare)
  • Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming
  • 2017
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; , s. 9-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Reprogramming of cellular identity using exogenous expression of transcription factors (TFs) is a powerful and exciting tool for tissue engineering, disease modeling, and regenerative medicine. However, generation of desired cell types using this approach is often plagued by inefficiency, slow conversion, and an inability to produce mature functional cells. Here, we show that expression of constitutively active SMAD2/3 significantly improves the efficiency of induced pluripotent stem cell (iPSC) generation by the Yamanaka factors. Mechanistically, SMAD3 interacts with reprogramming factors and co-activators and co-occupies OCT4 target loci during reprogramming. Unexpectedly, active SMAD2/3 also markedly enhances three other TF-mediated direct reprogramming conversions, from B cells to macrophages, myoblasts to adipocytes, and human fibroblasts to neurons, highlighting broad and general roles for SMAD2/3 as cell-reprogramming potentiators. Our results suggest that co-expression of active SMAD2/3 could enhance multiple types of TF-based cell identity conversion and therefore be a powerful tool for cellular engineering. Ruetz et al. show that constitutively active SMAD2/3 has a surprising ability to boost the efficiency of cell reprogramming both to iPSCs and across lineages and may therefore be a general factor that can enhance transcription-factor-mediated reprogramming in a variety of contexts.
  •  
17.
  • Sariyar, Sanem, et al. (författare)
  • High-parametric protein maps reveal the spatial organization in early-developing human lung
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The respiratory system, encompassing the lungs, trachea, and vasculature, is essential for terrestrial life. Although recent research has illuminated aspects of lung development, such as cell lineage origins and their molecular drivers, much of our knowledge is still based on animal models, or is deduced from transcriptome analyses. In this study, conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the spatiotemporal organization of lung during the first trimester of human gestation in situ and at protein level. We used high-parametric tissue imaging on human lung samples, aged 6 to 13 post-conception weeks, using a 30-plex antibody panel. Our approach yielded over 2 million individual lung cells across five developmental timepoints, with an in-depth analysis of nearly 1 million cells. We present a spatially resolved cell type composition of the developing human lung, with a particular emphasis on their proliferative states, spatial arrangement traits, and their temporal evolution throughout lung development. We also offer new insights into the emerging patterns of immune cells during lung development. To the best of our knowledge, this study is the most extensive protein-level examination of the developing human lung. The generated dataset is a valuable resource for further research into the developmental roots of human respiratory health and disease.
  •  
18.
  •  
19.
  • Sountoulidis, Alexandros, et al. (författare)
  • A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung
  • 2023
  • Ingår i: Nature Cell Biology. - : Springer Nature. - 1465-7392 .- 1476-4679.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sountoulidis et al. provide a spatial gene expression atlas of human embryonic lung during the first trimester of gestation and identify 83 cell identities corresponding to stable cell types or transitional states. The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
  •  
20.
  • Ståhl, Patrik, Dr., et al. (författare)
  • Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 353:6294, s. 78-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the pattern of proteins or messenger RNAs (mRNAs) in histological tissue sections is a cornerstone in biomedical research and diagnostics. This typically involves the visualization of a few proteins or expressed genes at a time. We have devised a strategy, which we call "spatial transcriptomics," that allows visualization and quantitative analysis of the transcriptome with spatial resolution in individual tissue sections. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, we demonstrate high-quality RNA-sequencing data with maintained two-dimensional positional information from the mouse brain and human breast cancer. Spatial transcriptomics provides quantitative gene expression data and visualization of the distribution of mRNAs within tissue sections and enables novel types of bioinformatics analyses, valuable in research and diagnostics.
  •  
21.
  • Stäubert, Claudia, et al. (författare)
  • Rewired metabolism in drug-resistant leukemia cells : a metabolic switch hallmarked by reduced dependence on exogenous glutamine
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:13, s. 8348-8359
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid beta-xidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics andRNAexpression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.
  •  
22.
  • van Bruggen, David, et al. (författare)
  • Developmental landscape of human forebrain at a single-cell level identifies early waves of oligodendrogenesis
  • 2022
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 57:11, s. 1421-1436, 1421-1436.e1-e5
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligodendrogenesis in the human central nervous system has been observed mainly at the second trimester of gestation, a much later developmental stage compared to oligodendrogenesis in mice. Here, we characterize the transcriptomic neural diversity in the human forebrain at post-conception weeks (PCW) 8–10. Using single-cell RNA sequencing, we find evidence of the emergence of a first wave of oligodendrocyte lineage cells as early as PCW 8, which we also confirm at the epigenomic level through the use of single-cell ATAC-seq. Using regulatory network inference, we predict key transcriptional events leading to the specification of oligodendrocyte precursor cells (OPCs). Moreover, by profiling the spatial expression of 50 key genes through the use of in situ sequencing (ISS), we identify regions in the human ventral fetal forebrain where oligodendrogenesis first occurs. Our results indicate evolutionary conservation of the first wave of oligodendrogenesis between mice and humans and describe regulatory mechanisms involved in human OPC specification.
  •  
23.
  • Wee, Shimei, et al. (författare)
  • Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin, revealed that NSC-proximal GICs were more sensitive, corroborating the transcriptome data. Furthermore, Ca2+ drug sensitivity was reduced in GICs after differentiation, with most potent effect in the NSC-proximal GIC, supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium, sodium and Ca2+. Conversely, a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+, were expressed in NSC-distal GICs. In particular, expression of the AMPA glutamate receptor subunit GRIA1, was found to associate with Ca2+ sensitive NSC-proximal GICs, and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP, brain lipid-binding protein) in this extended analysis. In summary, NSC-associated NES+/FABP7(+)/GRIA1(+) GICs were selectively sensitive to disturbances in Ca2+ homeostasis, providing a potential target mechanism for eradication of an immature population of malignant cells.
  •  
24.
  • Zeisel, Amit, et al. (författare)
  • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6226, s. 1138-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24
Typ av publikation
tidskriftsartikel (17)
annan publikation (3)
doktorsavhandling (3)
patent (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (6)
populärvet., debatt m.m. (1)
Författare/redaktör
Linnarsson, Sten (22)
Nilsson, Mats (7)
Lundeberg, Joakim (7)
Li, Xiaofei (6)
Andrusivova, Zaneta (5)
Sundström, Erik (4)
visa fler...
Braun, Emelie (4)
Sariyar, Sanem (4)
Zeisel, Amit (4)
Lundberg, Emma (3)
Mulder, Jan (3)
Hu, Lijuan (3)
Ayoglu, Burcu (3)
Andang, Michael (3)
Vinsland, Elin (3)
Lönnerberg, Peter (3)
Marco Salas, Sergio (3)
La Manno, Gioele (3)
Uhlén, Mathias (2)
Harkany, Tibor (2)
Nelander, Sven (2)
Avenel, Christophe (2)
Asp, Michaela (2)
Larsson, Ludvig (2)
Czarnewski, Paulo, 1 ... (2)
Bergmann, Olaf (2)
Alpar, Alan (2)
Uhrbom, Lene (2)
Castelo-Branco, Gonc ... (2)
Barker, Roger A. (2)
Johnsson, Anna (2)
Samakovlis, Christos (2)
Codeluppi, Simone (2)
Linnarsson, Sten, Pr ... (2)
Sramkova, Zuzana (2)
Sekyrova, Petra (2)
Adameyko, Igor (2)
Czarnewski, Paulo (2)
Sundstrom, Erik (2)
Schmidt, Linnea (2)
Käller Lundberg, Emm ... (2)
Segerman, Anna (2)
Vicari, Marco (2)
Martinez Casals, Ana (2)
Gyllborg, Daniel (2)
Mattsson Langseth, C ... (2)
Lonnerberg, Peter (2)
Wee, Shimei (2)
Romanov, Roman A (2)
Hansen, Jan Niklas (2)
visa färre...
Lärosäte
Karolinska Institutet (18)
Kungliga Tekniska Högskolan (13)
Uppsala universitet (8)
Stockholms universitet (5)
Lunds universitet (3)
Umeå universitet (1)
visa fler...
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Medicin och hälsovetenskap (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy