SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linnros Jan) "

Sökning: WFRF:(Linnros Jan)

  • Resultat 1-50 av 183
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruhn, Benjamin, et al. (författare)
  • Blinking Statistics of Silicon Quantum Dots
  • 2011
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 11:12, s. 5574-5580
  • Tidskriftsartikel (refereegranskat)abstract
    • The blinking statistics of numerous single silicon quantum dots fabricated by electron-beam lithography, plasma etching, and oxidation have been analyzed. Purely exponential on- and off-time distributions were found consistent with the absence of statistical aging. This is in contrast to blinking reports in the literature where power-law distributions prevail as well as observations of statistical aging in nanocrystal ensembles. A linear increase of the switching frequency with excitation power density indicates a domination of single-photon absorption processes, possibly through a direct transfer of charges to trap states without the need for a bimolecular Auger mechanism. Photoluminescence saturation with increasing excitation is not observed; however, there is a threshold in excitation (coinciding with a mean occupation of one exciton per nanocrystal) where a change from linear to square-root increase occurs. Finally, the statistics of blinking of single quantum dots in terms of average on-time, blinking frequency and blinking amplitude reveal large variations (several orders) without any significant correlation demonstrating the individual microscopic character of each quantum dot.
  •  
2.
  • Bruhn, Benjamin, et al. (författare)
  • Controlled fabrication of individual silicon quantum rods yielding high intensity, polarized light emission
  • 2009
  • Ingår i: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 20:50, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Elongated silicon quantum dots (also referred to as rods) were fabricated using a lithographic process which reliably yields sufficient numbers of emitters. These quantum rods are perfectly aligned and the vast majority are spatially separated well enough to enable single-dot spectroscopy. Not only do they exhibit extraordinarily high linear polarization with respect to both absorption and emission, but the silicon rods also appear to luminesce much more brightly than their spherical counterparts. Significantly increased quantum efficiency and almost unity degree of linear polarization render these quantum rods perfect candidates for numerous applications.
  •  
3.
  • Bruhn, Benjamin, et al. (författare)
  • Transition from silicon nanowires to isolated quantum dots : Optical and structural evolution
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 87:4, s. 045404-
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of the structural and optical properties of a silicon core in oxidized nanowalls is investigated as a function of oxidation time. The same individual nanostructures are characterized after every oxidation step in a scanning electron microscope and by low-temperature photoluminescence, while a representative sample is also imaged in a transmission electron microscope. Analysis of a large number of recorded single-dot spectra and micrographs allows to identify delocalized and localized exciton emission from a nanowire as well as confined exciton emission of a nanocrystal. It is shown how structural transitions from one-to zero-dimensional confinement affect single-nanostructure optical fingerprints.
  •  
4.
  •  
5.
  • Janda, Petr, et al. (författare)
  • Modified spontaneous emission of silicon nanocrystals embedded in artificial opals
  • 2007
  • Ingår i: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 40:19, s. 5847-5853
  • Tidskriftsartikel (refereegranskat)abstract
    • Si nanocrystals (NCs) were embedded in synthetic silica opals by means of Si-ion implantation or opal impregnation with porous-Si suspensions. In both types of sample photoluminescence (PL) is strongly Bragg-reflection attenuated (up to 75%) at the frequency of the opal stop-band in a direction perpendicular to the ( 1 1 1) face of the perfect hcp opal structure. Time-resolved PL shows a rich distribution of decay rates, which contains both shorter and longer decay components compared with the ordinary stretched exponential decay of Si NCs. This effect reflects changes in the spontaneous emission rate of Si NCs due to variations in the local density of states of real opal containing defects.
  •  
6.
  • Sychugov, Ilya, et al. (författare)
  • Light emission from silicon nanocrystals: probing a single quantum do
  • 2006
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 252:15, s. 5249-5253
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of low-temperature photoluminescence measurements performed on single silicon nanocrystals is presented. The luminescence emission linewidth of Si nanocrystals is found to be less than thermal broadening at low temperature, confirming the atomic-like nature of their energetic states. Beside the main peak the low-temperature spectra reveal a similar to 6 meV replica, the origin of which is discussed. For some of the investigated dots, we also observe a similar to 60 meV transverse optical (TO) phonon replica. The regular arrangement of individual nanocrystals used in this work enables combined high-resolution transmission electron microscopy (TEM) and low-temperature photoluminescence characterization of the same single quantum dot.
  •  
7.
  • Sychugov, Ilya, et al. (författare)
  • Luminescence blinking of a Si quantum dot in a SiO2 shell
  • 2005
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : The American Physical Society. - 1098-0121 .- 1550-235X. ; 71:11, s. 115331-1-115331-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomenon of on-off luminescence intermittency - blinking - in silicon nanocrystals was studied using a single-dot microphotoluminescence technique. From recordings of the luminescence intensity trace, on- and off-time distributions were extracted revealing exponential behavior, as expected for systems with blinking of a purely random nature. The corresponding switching rates for on-off and off-on processes exhibit different dependence on the excitation intensity. While the on-off switching rate grows quadratically with the excitation, the inverse process is nearly pumping power independent. Experimental findings are interpreted in terms of a dot "charging" model, where a carrier may become trapped in the surrounding matrix due to thermal and Auger-assisted processes. Observed blinking kinetics appear to be different from that of porous silicon particles.
  •  
8.
  • Sychugov, Ilya, et al. (författare)
  • Narrow luminescence linewidth of a silicon quantum dot
  • 2005
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 94:8, s. 087405 (1)-087405 (4)
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-dot luminescence spectroscopy was used to study the emission linewidth of individual silicon nanocrystals from low temperatures up to room temperature. The results show a continuous line narrowing towards lower temperatures with a linewidth as sharp as 2 meV at 35 K. This value, clearly below the thermal broadening at this temperature, proves the atomiclike emission from silicon quantum dots subject to quantum confinement. The low temperature measurements further reveal a similar to6 meV replica, whose origin is discussed. In addition, an similar to60 meV TO-phonon replica was detected, which is only present in a fraction of the dots.
  •  
9.
  • Sychugov, Ilya, et al. (författare)
  • Single dot optical spectroscopy of silicon nanocrystals: Low temperature measurements
  • 2005
  • Ingår i: Optical materials (Amsterdam). - : Elsevier BV. - 0925-3467 .- 1873-1252. ; 27:5, s. 973-976
  • Tidskriftsartikel (refereegranskat)abstract
    • Single dot spectroscopy allows studying properties of a single nanocrystal avoiding inhomogeneous broadening of the emission band. Here, data obtained by this technique for Si nanocrystals fabricated by electron beam lithography, plasma etching and subsequent size-reduction by oxidation are presented. First, blinking (on–off intermittence) of the luminescence was observed for most individual nanocrystals, although some exhibited relatively stable luminescence. As a result of the quantum confinement effect spectra with different emission wavelengths for different nanocrystals were recorded. While at room temperature the full width at half-maximum of the nanocrystal emission peaks was measured to be 100–150 meV, at 80 K the linewidth for some dots appeared to be about 25 meV only. The observed temperature dependence of the homogeneous linewidth may lead to an understanding of the exciton–phonon interaction in indirect band-gap quantum dots.
  •  
10.
  • Valenta, Jan, et al. (författare)
  • Coexistence of 1D and Quasi-0D Photoluminescence from Single Silicon Nanowires
  • 2011
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 11:7, s. 3003-3009
  • Tidskriftsartikel (refereegranskat)abstract
    • Single silicon nanowires (Si-NWs) prepared by electron-beam lithography and reactive-ion etching are investigated by imaging optical spectroscopy under variable temperatures and laser pumping intensities. Spectral images of individual Si-NWs reveal a large variability of photoluminescence (PL) along a single Si-NW. The weaker broad emission band asymmetrically extended to the high-energy side is interpreted to be due to recombination of quasi-free 1D excitons while the brighter localized emission features (with significantly variable peak position, width, and shape) are due to localization of electron hole pairs in surface protrusions acting like quasi-0D centers or quantum dots (QDs). Correlated PL and scanning electron microscopy images indicate that the efficiently emitting QDs are located at the Si-NW interface with completely oxidized neck of the initial Si wall. Theoretical fitting of the delocalized PL emission band explains its broad asymmetrical band to be due to the Gaussian size distribution of the Si-NW diameter and reveals also the presence of recombination from the Si-NW excited state which can facilitate a fast capture of excitons into QD centers.
  •  
11.
  • Valenta, Jan, et al. (författare)
  • Electroluminescence of single silicon nanocrystals
  • 2004
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 84:9, s. 1459-1461
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on measurements of room-temperature electroluminescence from single silicon nanocrystals. The electrically driven emission reveals typical characteristics of single-nanocrystal luminescence: the peak wavelength variations, narrowing of spectral bands, a high degree of linear polarization, and intensity fluctuations (blinking) observed on a scale of minutes. From the count rate statistics of individual nanocrystals, we conclude that the yield of radiative emission is as high as 19%. These findings may open a route to highly efficient all-silicon light emitters.
  •  
12.
  • Valenta, Jan, et al. (författare)
  • Light-Emission Performance of Silicon Nanocrystals Deduced from Single Quantum Dot Spectroscopy
  • 2008
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 18:18, s. 2666-2672
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectra of individual silicon nanocrystals within porous Si grains are studied by the wide-field imaging microspectroscopy and their ON-OFF, blinking is detected by the confocal single-photon-counting microscopy. Observed spectral and blinking properties comprise all features reported before in differently prepared single Si nanocrystals (SiNCs). Former apparently contradictory results are shown to be due to different experimental conditions. When the effect of dark periods (OFF switching) is removed the common ultimate photoluminescence properties Of SiO2 passivated SiNCs are found, namely the quantum efficiency (QE) of about 10-20% up to the pumping rate corresponding to one exciton average excitation per quantum dot. At higher pump rates the QE is slowly decreasing as the 0.7th power of excitation. This is most likely due to Auger recombination which, however, seems to be weakened compared with measurements of nanocrystal assemblies. We conclude that SiNCs may be pumped above one exciton occupancy to yield a higher light emission, being advantageous for applications.
  •  
13.
  • Valenta, Jan, et al. (författare)
  • Photoluminescence spectroscopy of single silicon quantum dots
  • 2002
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 80:6, s. 1070-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoluminescence (PL) from single silicon quantum dots have been recorded and spectrally resolved at room temperature. The Si nanocrystals (NCs) were fabricated using electron-beam lithography and reactive ion etching resulting in Si nanopillars that were subsequently oxidized to produce luminescent silicon cores. The NCs are organized in a regular matrix which enables repeated observation of a specific single NC. By reflection and PL imaging, the emission is shown to originate from the Si nanopillars. The single-NC PL spectrum has a single band with a width of similar to130 meV. The emission is polarized in arbitrary directions suggestive of geometrical differences in the shape of the nanocrystals. The quantum efficiency of the PL has been found to reach as much as 35% for some nanocrystals. Our experiments support the quantum-confinement model for the PL emission of Si nanocrystals and elucidate the critical role of defect passivation.
  •  
14.
  • Valenta, Jan, et al. (författare)
  • Polarization of photoluminescence excitation and emission spectra of silicon nanorods within single Si/SiO2 nanowires
  • 2011
  • Ingår i: Physica Status Solidi. C, Current topics in solid state physics. - : Wiley-VCH Verlagsgesellschaft. - 1610-1634 .- 1610-1642. ; 8:3, s. 1017-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarization properties of individual silicon nanowires are studied using an optical micro-spectroscopy setup equipped with a Fresnel rhomb to rotate the polarization of the exciting laser and the analyzer to characterize the polarization of emitted photoluminescence. The Si nanowire samples are prepared by electron-beam lithography, plasma etching and oxidation. The fabricated wires are embedded in SiO2 and oriented parallel to the Si substrate. Due to the fluctuating wire diameter (around 5 nm) the very long wires (several tens of μm) are effectively divided into an array of quantum rods (prolate ellipsoids). These structures have strong photoluminescence under UV-blue excitation at room temperature. The degree of photoluminescence linear polarization of both excitation and emission is very high, between 0.9-1, and reveals relatively low fluctuations at different spots of the wires. Experimental results are compared with available theoretical models leading to the conclusion that the high polarization degree is mostly due to surface charges (dielectric confinement) with smaller contribution of quantum confinement effects.
  •  
15.
  • Afrasiabi, Roodabeh, et al. (författare)
  • Effect of microwave-assisted silanization on sensing properties of silicon nanoribbon FETs
  • 2015
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier B.V.. - 0925-4005 .- 1873-3077. ; 209, s. 586-595
  • Tidskriftsartikel (refereegranskat)abstract
    • An important concern with using silicon nanoribbon field-effect transistors (SiNR FET) for ion-sensing is the pH-response of the gate oxide surface. Depending on the application of the FET sensor, this response has to be chemically manipulated. Thus in silicon oxide-gated pH-sensors with integrated sensor and reference FETS, a surface with high pH-sensitivity, compared to the bare gate oxide, is required in the sensor FETs (SEFET), whereas in the reference FETs (REFET) the surface has to be relatively pH-insensitive. In order to control the sensitivity and chemistry of the oxide surface of the nanoribbons, a silanization reagent with a functional group is often self-assembled on the SiNR surface. Choice of a silanization reaction that results in a self-assembled layer on a silicon oxide surface has been studied extensively over the past decades. However, the effect of various self-assembled layers such as monolayers or mixed layers on the electrical response of SiNR FETs in aqueous solution needs to be exploited further, especially for future integrated SEFET/REFET systems. In this work, we have performed a comprehensive study on 3-aminopropyltriethoxysilane (APTES) silanization of silicon oxide surfaces using microwave (MW) heating as a new biocompatible route to conventional methods. A set of complementary surface characterization techniques (ellipsometry, AFM and ATR-FTIR) was used to analyze the properties of the APTES layer deposited on the silicon surface. We have found that a uniform monolayer can be achieved within 10 min by heating the silanization solution to 75 °C using MW heating. Furthermore, electrical measurements suggest that little change in device performance is observed after exposure to MW irradiation. Real-time pH measurements indicate that a uniform APTES monolayer not only reduces the pH sensitivity of SiNR FET by passivating the surface silanol groups, but also makes the device less sensitive to cation concentration in the background electrolyte. Our silanization route proves promising for future chemical surface modification of on-chip REFETs.
  •  
16.
  • Afrasiabi, Roodabeh, et al. (författare)
  • Integration of a droplet-based microfluidic system and silicon nanoribbon FET sensor
  • 2016
  • Ingår i: Micromachines. - : MDPI AG. - 2072-666X. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel microfluidic system that integrates droplet microfluidics with a silicon nanoribbon field-effect transistor (SiNR FET), and utilize this integrated system to sense differences in pH. The device allows for selective droplet transfer to a continuous water phase, actuated by dielectrophoresis, and subsequent detection of the pH level in the retrieved droplets by SiNR FETs on an electrical sensor chip. The integrated microfluidic system demonstrates a label-free detection method for droplet microfluidics, presenting an alternative to optical fluorescence detection. In this work, we were able to differentiate between droplet trains of one pH-unit difference. The pH-based detection method in our integrated system has the potential to be utilized in the detection of biochemical reactions that induce a pH-shift in the droplets.
  •  
17.
  •  
18.
  • Afrasiabi, Roodabeh (författare)
  • Silicon Nanoribbon FET Sensors : Fabrication, Surface Modification and Microfluidic Integration
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Over the past decade, the field of medical diagnostics has seen an incredible amount of research towards the integration of one-dimensional nanostructures such as carbon nanotubes, metallic and semiconducting nanowires and nanoribbons for a variety of bio-applications. Among the mentioned one-dimensional structures, silicon nanoribbon (SiNR) field-effect transistors (FET) as electro-chemical nanosensors hold particular promise for label-free, real-time and sensitive detection of biomolecules using affinity-based detection. In SiNR FET sensors, electrical transport is primarily along the nanoribbon axis in a thin sheet (< 30 nm) serving as the channel. High sensitivity is achieved because of the large surface-to-volume ratio which allows analytes to bind anywhere along the NR affecting the entire conductivity by their surface charge. Unfortunately, sensitivity without selectivity is still an ongoing issue and this thesis aims at addressing the detection challenges and further proposing effective developments, such as parallel and multiple detection through using individually functionalized SiNRs.We present here a comprehensive study on design, fabrication, operation and device performance parameters for the next generation of SiNR FET sensors towards multiplexed, label-free detection of biomolecules using an on-chip microfluidic layer which is based on a highly cross-linked epoxy. We first study the sensitivity of different NR dimensions followed by analysis of the drift and hysteresis effects. We have also addressed two types of gate oxides (namely SiO2 and Al2O3) which are commonly used in standard CMOS fabrication of ISFETs (Ion sensitive FET). Not only have we studied and compared the hysteresis and response-time effects in the mentioned two types of oxides but we have also suggested a new integrated on-chip reference nanoribbon/microfluidics combination to monitor the long-term drift in the SiNR FET nanosensors. Our results show that compared to Al2O3, silicon-oxide gated SiNR FET sensors show high hysteresis and slow-response which limit their performance only to background electrolytes with low ionic strength. Al2O3 on the other hand proves more promising as the gate-oxide of choice for use in nanosensors. We have also illustrated that the new integrated sensor NR/Reference NR can be utilized for real-time monitoring of the above studied sources of error during pH-sensing. Furthermore, we have introduced a new surface silanization (using 3-aminopropyltriethoxysilane) method utilizing microwave-assisted heating which compared to conventional heating, yields an amino-terminated monolayer with high surface coverage on the oxide surface of the nanoribbons. A highly uniform and dense monolayer not only reduces the pH sensitivity of the bare-silicon oxide surface in a physiological media but also allows for more receptors to be immobilized on the surface. Protocols for surface functionalization and biomolecule immobilization were evaluated using model systems. Selective spotting of receptor molecules can be used to achieve localized functionalization of individual SiNRs, opening up opportunities for multiplexed detection of analytes.Additionally, we present here a novel approach by integrating droplet-based microfluidics with the SiNR FET sensors. Using the new system we are able to successfully detect trains of droplets with various pH values. The integrated system enables a wide range of label-free biochemical and macromolecule sensing applications based on detection of biological events such as enzyme-substrate interactions within the droplets.
  •  
19.
  • Andersson, Henrik, 1975- (författare)
  • Position Sensitive Detectors : Device Technology and Applications in Spectroscopy
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with the development, processing and characterization of position sensitive detectors and, in addition, to the development of compact and cost effective spectrometers. Position sensitive detectors are used to measure, with great accuracy and speed, the position of a light spot incident on the surface. Their main use is for triangulation, displacement and vibration measurements. A type of position sensitive detector based on the MOS principle and using optically transparent indium tin oxide as a gate contact has been developed. This type of detector utilizes the MOS principle where an induced channel forms beneath the gate oxide in the surface of the Silicon substrate. One and two dimensional detectors have both been fabricated and characterized. The first measurements showed that the linearity did not fulfil expectations and it was suspected that stress induced by the gate contact could be the reason for the seemingly high nonlinearity. Further investigations into both the p-n junction and the MOS type position sensitive detectors lead to the conclusion that the indium tin oxide gate is responsible for inducing a substantial stress in the surface of the detector, thus giving rise to increased position nonlinearity. The heat treatment step which was conducted was determined to be critical as either a too short or too long heat treatment resulted in stress in the gate and channel leading to position nonlinearity. If a correctly timed heat treatment is performed then the detector’s linearity is in parity with the best commercial position sensitive detectors. In addition, the development of very small, compact and cost effective spectrometers has been performed with the aim of constructing devices for use in the process industry. The development of a wedge shaped array of Fabry-Perot interferometers that can be mounted directly on top of a detector makes it possible to construct a very compact spectrometer using the minimum amount of optics. This wedge interferometer has been evaluated by means of array pixel detectors and position sensitive detectors for both the infrared and the visible wavelength ranges. When used with a position sensitive detector it is necessary to use a slit to record the intensity of the interferogram for many points over the detector, equivalent to pixels on an array detector. Usually the use of moving parts in a spectrometer will impose the use of high precision scanning mechanisms and calibration. By using a position sensitive detector for the interferogram readout both the position and the intensity are known for every measurement point and thus the demands placed on the scanning system are minimized.
  •  
20.
  • Badel, Xavier, et al. (författare)
  • Doping of electrochemically etched pore arrays in n-type silicon : processing and electrical characterization
  • 2005
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 152:4, s. G252-G258
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon p-n diodes formed in the walls of deep pores have been electrically characterized. The pores were electrochemically etched in low-doped n-type silicon substrates, and the entire pore array was doped p(+) by boron diffusion at 1050 degrees C. Two different process flows were investigated to disconnect the p(+) layers from one pore to another. The first consists of removing a few micrometers of silicon at the top of the sample using reactive ion etching after diffusion while the second enables the prevention of doping at the top of the pore walls with an oxide, acting as a barrier during diffusion. Current-voltage and capacitance-voltage characteristics of p-n junctions are presented and related parameters, such as the serial resistance and the ideality factor are discussed. The results show good rectifying behavior of the diodes with a reverse current about four to five decades smaller than the forward current. Measurements with two pores connected in a transistor-like configuration (p(+)/n(-)/p(+)), were also performed. Device simulations were used to examine the device behavior. Finally, our results demonstrate that pores could work as individual detector pixels for moderate reverse voltages, suitable for radiation imaging applications.
  •  
21.
  • Badel, Xavier, et al. (författare)
  • Electrochemical etching of n-type silicon based on carrier injection from a back side p-n junction
  • 2003
  • Ingår i: Electrochemical and solid-state letters. - : The Electrochemical Society. - 1099-0062 .- 1944-8775. ; 6:6, s. C79-C81
  • Tidskriftsartikel (refereegranskat)abstract
    • A technique for electrochemical etching of n-type silicon in aqueous hydrofluoric acid is presented. This technique differs from photoelectrochemical etching because the holes (positive carriers) needed for the dissolution reaction to occur, are not photogenerated. The principle developed here is to inject these positive carriers using a p-n junction under forward bias formed at the back side of the sample. Drift-diffusion of holes through the wafer thickness allows a chemical dissolution reaction at the interface with the electrolyte. To enable holes diffusing through the wafer the minority carrier lifetime must be sufficiently high making the technique well adapted for high resistivity silicon. However, extension to low resistivity wafers has been achieved. Results show the possibility of forming pore arrays and diverse 3D structures.
  •  
22.
  • Badel, Xavier, 1977- (författare)
  • Electrochemically etched pore arrays in silicon for X-ray imaging detectors
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Digital devices have now been introduced in many X-ray imaging applications, replacing slowly traditional photographic films. These devices are preferred as they offer real time imaging, easy handling and fast treatment of the images. However, the performance of the detectors still have to be improved in order to increase the image quality, and possibly reduce the X-ray dose, a vital parameter for medical use. In this thesis, three different new detector concepts have been investigated. All designs use pore arrays, which are ideal starting structures to form pixellated detectors. Electrochemical etching of n-type silicon in aqueous hydrofluoric acid solution (HF) has been studied to form these pore arrays. A broad range of pores have been fabricated with diameters varying from 200 nm to 40 µm and with depths reaching almost the wafer thickness, thus leading to very high aspect ratios. The technique was also found to be suitable for the formation of other types of structures such as pillars and tubes on the sub micrometer scale. The etching is based on the dissolution of silicon in HF under anodic bias and a supply of positive electrical carriers (holes). As holes are the minority carriers in n-type silicon, they are usually photo-generated. In this work an alternative technique, based on hole injection from a forward-biased pn junction, has been successfully pioneered. The first X-ray imaging detector concept presented in the thesis consists of a silicon charge coupled device (CCD) in proximity with a scintillating screen. The screen is made from a pore array having reflective pore walls and filled with CsI(Tl), emitting photons at a wavelength of 550 nm under X-ray exposure. The secondary emitted photons are light-guided by the pore walls and then detected by the CCD pixels. Detectors were fully fabricated and characterized. This concept provides good spatial resolution with negligible cross talk between adjacent pixels. The dependences of the detector efficiency on pore depth and on the coating of the pore walls are presented. Although most of the produced detectors had a detective quantum efficiency of about 25%, some detectors indicate that efficient scintillating screens can be achieved approaching the theoretical limit as set by poissonian statistics of the X-ray photons. The two other detector designs require the formation of vertical pn junctions, i.e. in the pore walls. In one concept the secondary emitted photons are detected by photodiodes located in the pore walls. This would lead to high charge collection efficiency as the photons do not have to be guided to one end of the pore. However, high noise due to the direct detection of X-rays in the diodes is expected. The other concept is based on generation of electron-hole pairs in a semiconductor and the ‘3D’ detector, where an array of vertical electrodes is used to separate the charges via an electric field. To uniformly dope the inside of deep pores, both boron diffusion and low-pressure chemical vapor diffusion of boron-doped poly-silicon were shown to be successful techniques. This was confirmed by SIMS profiles taken through the pore wall thickness. Finally, the possibility to form individual junction in each pore was shown. The diodes were electrically characterized, demonstrating good rectifying behavior and sensitivity to light.
  •  
23.
  • Badel, Xavier, et al. (författare)
  • Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon
  • 2004
  • Ingår i: Superlattices and Microstructures. - : Elsevier BV. - 0749-6036 .- 1096-3677. ; 36:1/3, s. 245-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical etching has been studied to structure n-type silicon substrates at the nanoscale. In this work, well-ordered pore arrays with diameters in the range of 150-500 nm and depths up to 50 mum have been fabricated. The pores were successfully formed by anodic etching in (100)oriented n-type silicon wafers of low-resistivity, typically 1 Omegacm, using aqueous hydrofluoric acid solutions. The lithographic step was performed in a thermally grown oxide using a stepper and dry oxide etching technique. Two types of oxide openings and pitch sizes were tested. The smallest oxide opening realised at this stage was 0.5 mum for a pitch of 1 mum. Stable pore formation was obtained and the smallest pore size obtained was about 200 nm with an aspect ratio close to 100.
  •  
24.
  • Badel, Xavier, et al. (författare)
  • Formation of pn junctions in deep silicon pores for X-ray imaging detector applications
  • 2003
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - 0168-9002 .- 1872-9576. ; 509:1-3, s. 96-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of pn junctions in deep silicon pores has been studied for a new concept of X-ray imaging detectors. The sensitive part of the device is an array of CsI(Tl) columns formed by filling a silicon matrix of pores having pn junctions in their walls. Under X-ray illumination, the CsI(TI) scintillator emits photons that are collected by the pn junctions. Relatively high signal collection efficiency is expected. However, the formation of pn junctions inside pore walls represents a challenging step in the detector fabrication. In this work pore matrices were fabricated in n-type silicon by deep reactive ion etching and by photo-electrochemical etching. The pn junctions were formed either by boron diffusion or deposition of boron doped poly-silicon. Various techniques were used to analyze the transverse depth profiles of boron atoms at different pore depths. The study shows successful results for pn-junctions formed both by diffusion and by poly-silicon deposition.
  •  
25.
  • Badel, Xavier, et al. (författare)
  • Improvement of an X-ray imaging detector based on a scintillating guides screen
  • 2002
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - 0168-9002 .- 1872-9576. ; 487:1-2, s. 129-135
  • Tidskriftsartikel (refereegranskat)abstract
    • An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achieved using a standard dental X-ray source and doses in the order of those used at the moment by dentists (around 25 mR).
  •  
26.
  • Badel, Xavier, et al. (författare)
  • Metallized and oxidized silicon macropore arrays filled with a scintillator for CCD-based X-ray imaging detectors
  • 2004
  • Ingår i: IEEE Transactions on Nuclear Science. - : IEEE. - 0018-9499 .- 1558-1578. ; 51:3, s. 1001-1005, s. 1006-1010
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon charge-coupled devices (CCDs) covered with a scintillating film are now available on the market for use in digital medical imaging. However, these devices could still be improved in terms of sensitivity and especially spatial resolution by coating the CCD with an array of scintillating waveguides. In this paper, such waveguides were fabricated by first etching pores in silicon, then performing metallization or oxidation of the pore walls and finally filling the pores with CsI(TI). The resulting structures were observed using scanning electron microscopy and tested under X-ray exposure. Theoretical efficiencies of macropore arrays filled with CsI(TI) were also calculated, indicating that the optimal pore depth for metallized macropore arrays is about 80 mum while it is around 350 mum for oxidized ones. This result, together with the roughness of the metal coating, explains why lower SNR values were measured with the metallized macropores. Indeed, the macropore arrays had depths in the range of 210-390 mum, which is favorable to oxidized structures.
  •  
27.
  • Badel, Xavier, et al. (författare)
  • Performance of scintillating waveguides for CCD-based X-ray detectors
  • 2006
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 53:1, s. 3-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Scintillating films are usually used to improve the sensitivity of CCD-based X-ray imaging detectors. For an optimal spatial resolution and detection efficiency, a tradeoff has to be made on the film thickness. However, these scintillating layers can also be structured to provide a pixellated screen. In this paper, the study of CsI(TI)-filled pore arrays is reported. The pores are first etched in silicon, then oxidized and finally filled with CsI(TI) to form scintillating waveguides. The dependence of the detector sensitivity on pore depth, varied from 40 to 400 mu m here, follows rather well theoretical predictions. Most of the detectors produced in this work have a detective quantum efficiency of the incoming X-ray photons of about 25%. However, one detector shows that higher efficiency can be achieved approaching almost the theoretical limit set by Poisson statistics of the incoming X-rays. Thus, we conclude that it is possible to fabricate scintillating waveguides with almost ideal performance. Imaging capabilities of the detectors are demonstrated.
  •  
28.
  • Bruhn, Benjamin, et al. (författare)
  • Blinking Statistics and Excitation-Dependent Luminescence Yield in Si and CdSe Nanocrystals
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:4, s. 2202-2208
  • Tidskriftsartikel (refereegranskat)abstract
    • ON-OFF intermittency or blinking is a phenomenon observed in single quantum emitters, which reduces their overall light emission. Even though it seems to be a fundamental property of quantum dots (QDs), substantial differences can be found in the blinking statistics of different nanocrystals. This work compares the blinking of numerous single, oxide-capped Si nanocrystals with that of CdSe/ZnS core-shell nanocrystals, measured under the same conditions in the same experimental system and over a broad range of excitation power densities. We find that ON- and OFF-times can be described by exponential statistics in Si QDs, as opposed to power-law statistics for the CdSe nanocrystals. The type of blinking (power-law or monoexponential) does not depend on excitation but seems to be an intrinsic property of the material system. Upon increasing excitation power, the duty cycle of Si quantum dots remains constant, whereas it decreases for CdSe nanocrystals, which is readily explained by blinking statistics. Both ON-OFF and OFF-ON transitions can be regarded as light-induced in Si/SiO2 QDs, while the OFF-ON transition in CdSe/ZnS nanocrystals is not stimulated by photons. The differences in blinking behavior in these systems will be discussed.
  •  
29.
  • Bruhn, Benjamin, et al. (författare)
  • Fabricating single silicon quantum rods for repeatable single dot photoluminescence measurements
  • 2011
  • Ingår i: Physica Status Solidi A-applications and materials science. - Malden : Wiley-VCH Verlagsgesellschaft. - 1862-6319. ; 208:3, s. 631-634
  • Tidskriftsartikel (refereegranskat)abstract
    • A fabrication method for a matrix pattern of laterally separated silicon quantum rods was developed, consisting of a three-step recipe utilizing electron beam lithography (EBL), reactive ion etching (RIE), and oxidation. Photoluminescence (PL) measurements -images, spectra, and blinking-verified that the presented method results in a high number of luminescing single silicon quantum rods in well defined positions on the sample. These are suitable for single dot spectroscopy and repeatable measurements, even using different measurement methods and instruments. [GRAPHICS] Colorized scanning electron microscope images of undulating silicon nanowalls for controlled single quantum rod fabrication.
  •  
30.
  • Bruhn, Benjamin, 1981- (författare)
  • Fabrication and characterization of single luminescing quantum dots from 1D silicon nanostructures
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Silicon as a mono-crystalline bulk semiconductor is today the predominant material in many integrated electronic and photovoltaic applications. This has not been the case in lighting technology, since due to its indirect bandgap nature bulk silicon is an inherently poor light emitter.With the discovery of efficient light emission from silicon nanostructures, great new interest arose and research in this area increased dramatically.However, despite more than two decades of research on silicon nanocrystals and nanowires, not all aspects of their light emission mechanisms and optical properties are well understood, yet.There is great potential for a range of applications, such as light conversion (phosphor substitute), emission (LEDs) and harvesting (solar cells), but for efficient implementation the underlying mechanisms have to be unveiled and understood.Investigation of single quantum emitters enable proper understanding and modeling of the nature and correlation of different optical, electrical and geometric properties.In large numbers, such sets of experiments ensure statistical significance. These two objectives can best be met when a large number of luminescing nanostructures are placed in a pattern that can easily be navigated with different measurement methods.This thesis presents a method for the (optional) simultaneous fabrication of luminescent zero- and one-dimensional silicon nanostructuresand deals with their structural and optical characterization.Nanometer-sized silicon walls are defined by electron beam lithography and plasma etching. Subsequent oxidation in the self-limiting regime reduces the size of the silicon core unevenly and passivates it with a thermal oxide layer.Depending on the oxidation time, nanowires, quantum dots or a mixture of both types of structures can be created.While electron microscopy yields structural information, different photoluminescence measurements, such as time-integrated and time-resolved imaging, spectral imaging, lifetime measurements and absorption and emission polarization measurements, are used to gain knowledge about optical properties and light emission mechanisms in single silicon nanocrystals.The fabrication method used in this thesis yields a large number of spatially separated luminescing quantum dots randomly distributed along a line, or a slightly smaller number that can be placed at well-defined coordinates. Single dot measurements can be performed even with an optical microscope and the pattern, in which the nanostructures are arranged, enables the experimenter to easily find the same individual dot in different measurements.Spectral measurements on the single dot level reveal information about processes that are involved in the photoluminescence of silicon nanoparticles and yield proof for the atomic-like quantized nature of energy levels in the conduction and valence band, as evidenced by narrow luminescence lines (~500 µeV) at low temperature. Analysis of the blinking sheds light on the charging mechanisms of oxide-capped Si-QDs and, by exposing exponential on- and off-time distributions instead of the frequently observed power law distributions, argues in favor of the absence of statistical aging. Experiments probing the emission intensity as a function of excitation power suggest that saturation is not achieved. Both absorption and emission of silicon nanocrystals contained in a one-dimensional silicon dioxide matrix are polarized to a high degree. Many of the results obtained in this work seem to strengthen the arguments that oxide-capped silicon quantum dots have universal properties, independently of the fabrication method, and that the greatest differences between individual nanocrystals are indeed caused by individual factors like local environment, shape and size (among others).
  •  
31.
  • Bruhn, Benjamin, et al. (författare)
  • Temporal correlation of blinking events in CdSe/ZnS and Si/SiO2 nanocrystals
  • 2014
  • Ingår i: Physica. B, Condensed matter. - : Elsevier BV. - 0921-4526 .- 1873-2135. ; 453, s. 63-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Well passivated single Si/SiO2 nanoparticles obey mono exponential blinking statistics, whereas CdSe/ZnS quantum dots follow an apparent (truncated) power-law. Log-normal distributions are found to describe the interval length histograms at least as well as power-laws, while at the same time being more physically feasible and significantly easing the determination of the exponential cutoff in the ON-time distribution. The correlation of an ON- (OFF-)interval with its temporally displaced ON (OFF) neighbors, as well as that of intermixed intervals (ON with OFF and OFF with ON neighbors) has been studied. As expected from purely random processes, the correlation coefficients for events in silicon nanocrystals equal zero, whereas positive correlations between the pure and negative correlations between the mixed states in CdSe quantum dots hint at a switching process between two distinct blinking regimes that are slower than the blinking itself.
  •  
32.
  • Cavallaro, Sara, et al. (författare)
  • Comparison and optimization of nanoscale extracellular vesicle imaging by scanning electron microscopy for accurate size-based profiling and morphological analysis
  • 2021
  • Ingår i: Nanoscale Advances. - : Royal Society of Chemistry. - 2516-0230. ; 3:11, s. 3053-3063
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanosized extracellular vesicles (EVs) have been found to play a key role in intercellular communication, offering opportunities for both disease diagnostics and therapeutics. However, lying below the diffraction limit and also being highly heterogeneous in their size, morphology and abundance, these vesicles pose significant challenges for physical characterization. Here, we present a direct visual approach for their accurate morphological and size-based profiling by using scanning electron microscopy (SEM). To achieve that, we methodically examined various process steps and developed a protocol to improve the throughput, conformity and image quality while preserving the shape of EVs. The study was performed with small EVs (sEVs) isolated from a non-small-cell lung cancer (NSCLC) cell line as well as from human serum, and the results were compared with those obtained from nanoparticle tracking analysis (NTA). While the comparison of the sEV size distributions showed good agreement between the two methods for large sEVs (diameter > 70 nm), the microscopy based approach showed a better capacity for analyses of smaller vesicles, with higher sEV counts compared to NTA. In addition, we demonstrated the possibility of identifying non-EV particles based on size and morphological features. The study also showed process steps that can generate artifacts bearing resemblance with sEVs. The results therefore present a simple way to use a widely available microscopy tool for accurate and high throughput physical characterization of EVs.
  •  
33.
  • Cavallaro, Sara, 1992- (författare)
  • Development of Techniques for Characterization, Detection and Protein Profiling of Extracellular Vesicles
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanosized extracellular vesicles (EVs, ∼30-2000 nm) have emerged as important mediators of intercellular communication, offering opportunities for both diagnostics and therapeutics. In particular, small EVs generated from the endolysosomal pathway (∼30-150 nm), referred to as exosomes, have attracted interest as a suitable biomarker for cancer diagnostics and treatment monitoring based on minimally invasive liquid biopsies. This is because exosomes carry valuable biological information (proteins, lipids, genetic material, etc.) reflecting their cells of origin. Using EVs as biomarkers or drug delivery agents in clinical applications requires a full understanding of their cellular origin, functions, and biological relevance. However, due to their small size and very high heterogeneity in molecular and physical features, the analysis of these vesicles is challenged by the limited detection ranges and/or accuracy of the currently available techniques. To overcome some of these challenges, this thesis focuses on developing different techniques for characterization, detection and protein profiling of EVs at both bulk and single particle levels. Specifically, the three methods investigated are scanning electron microscopy, electrokinetic sensing, and combined fluorescence - atomic force microscopy. First, a protocol for scanning electron microscopy imaging of EVs was optimized to improve the throughput and image quality of the method while preserving the shape of the vesicles. Application of the developed protocol for analysis of EVs from human serum showed the possibility to use scanning electron microscopy for morphological analysis and high-resolution size-based profiling of EVs over their entire size range. Comparison with nanoparticle tracking analysis, a commonly used technique for EV size estimation, showed a superior sensitivity of scanning electron microscopy for particles smaller than 70-80 nm. Moreover, the study showed process steps that can generate artifacts resembling sEVs and ways to minimize them. Secondly, a novel label-free electrokinetic sensor based on streaming current was developed, optimized and multiplexed for EV protein analysis at a bulk level. Using multiple microcapillary sensors functionalized with antibodies, the method showed the capacity for multiplexed detection of different surface markers on small EVs from non-small-cell lung cancer cells. The device performance in the multichannel configuration remained similar to the single-channel one in terms of noise, detection sensitivity, and reproducibility. The application of the technique for analysis of EVs isolated from lung cancer patients with different genomic alterations and after different applied treatments demonstrated the prospect of using EVs from liquid biopsies as a source of biomarker for cancer monitoring. Moreover, the results held promise for the application of the developed method in clinical settings. Finally, to increase the understanding of EV subpopulations and heterogeneity, a platform combining fluorescence and atomic force microscopy was developed for multiparametric analysis of EVs at a single particle level. The use of a precise spot identification approach and an efficient vesicle capture protocol allowed to study and correlate for the first time the membrane protein composition, size and mechanical properties (Young modulus) on individual small EVs. The application of the technique to vesicles isolated from different cell lines identified both common and cell line-specific EV subpopulations bearing distinct distributions of the analyzed parameters. For example, a sEV population co-expressing all the three analyzed proteins in relatively high abundance, yet having average diameters of <100 nm and relatively low Young moduli was found in all cell lines. The obtained results highlighted the possibility of using the developed platform to help decipher unsolved questions regarding EV biology. 
  •  
34.
  • Cavallaro, Sara, et al. (författare)
  • Label-Free Surface Protein Profiling of Extracellular Vesicles by an Electrokinetic Sensor
  • 2019
  • Ingår i: ACS Sensors. - : AMER CHEMICAL SOC. - 2379-3694. ; 4:5, s. 1399-1408
  • Tidskriftsartikel (refereegranskat)abstract
    • Small extracellular vesicles (sEVs) generated from the endolysosomal system, often referred to as exosomes, have attracted interest as a suitable biomarker for cancer diagnostics, as they carry valuable biological information and reflect their cells of origin. Herein, we propose a simple and inexpensive electrical method for label-free detection and profiling of sEVs in the size range of exosomes. The detection method is based on the electrokinetic principle, where the change in the streaming current is monitored as the surface markers of the sEVs interact with the affinity reagents immobilized on the inner surface of a silica microcapillary. As a proof-of-concept, we detected sEVs derived from the non-small-cell lung cancer (NSCLC) cell line H1975 for a set of representative surface markers, such as epidermal growth factor receptor (EGFR), CD9, and CD63. The detection sensitivity was estimated to be similar to 175000 sEVs, which represents a sensor surface coverage of only 0.04%. We further validated the ability of the sensor to measure the expression level of a membrane protein by using sEVs displaying artificially altered expressions of EGFR and CD63, which were derived from NSCLC and human embryonic kidney (HEK) 293T cells, respectively. The analysis revealed that the changes in EGFR and CD63 expressions in sEVs can be detected with a sensitivity in the order of 10% and 3%, respectively, of their parental cell expressions. The method can be easily parallelized and combined with existing microfluidic-based EV isolation technologies, allowing for rapid detection and monitoring of sEVs for cancer diagnosis.
  •  
35.
  • Cavallaro, Sara, et al. (författare)
  • Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy : Correlation and Heterogeneity in Their Molecular and Biophysical Features
  • 2021
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.
  •  
36.
  • Cavallaro, Sara, et al. (författare)
  • Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients
  • 2021
  • Ingår i: Biosensors & bioelectronics. - : Elsevier. - 0956-5663 .- 1873-4235. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALKtyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.
  •  
37.
  • Chen, Si, et al. (författare)
  • Current Instability for Silicon Nanowire Field-Effect Sensors Operating in Electrolyte with Platinum Gate Electrodes
  • 2011
  • Ingår i: Electrochemical and solid-state letters. - : The Electrochemical Society. - 1099-0062 .- 1944-8775. ; 14:7, s. J34-J37
  • Tidskriftsartikel (refereegranskat)abstract
    • Current instability is observed for silicon nanowire field-effect transistors operating in electrolytes with Pt gate electrodes. A comparative study involving an Ag/AgCl-reference gate electrode reveals that the effect results from a drift in the potential at the Pt-electrode/electrolyte interface. In a phosphate buffer saline of pH 7.4, the stabilization of the potential of the Pt electrode was found to require approximately 1000 s. A concurrent potential drift, with a comparable time constant, occurring at the electrolyte/oxidized-nanowire interface rendered a complex device current response which complicated the interpretation of the results.
  •  
38.
  • Chen, Si, 1982- (författare)
  • Electronic Sensors Based on Nanostructured Field-Effect Devices
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Point-of-care (POC) diagnostics presents a giant market opportunity with profound societal impact. In particular, specific detection of DNA and protein markers can be essential for early diagnosis of e.g. cancer, cardiovascular disease, infections or allergies. Today, identification of these markers often requires extensive laboratory work and hence is expensive and time consuming. Current methods for recognition and detection of specific biomolecules are mostly optics based and thus impose severe limitations as to convenience, specificity, sensitivity, parallel processing and cost reduction.Electronic sensors based on silicon nanowire field-effect transistors have been reported to be able to detect biomolecules with concentrations down to femtomolar (fM) level with high specificity. Although the reported capability needs further confirmation, the CMOS-compatible fabrication process of such sensors allows for low cost production and high density integration, which are favorable for POC applications. This thesis mainly focuses on the development of a multiplex detection platform based on silicon nanowire field-effect sensors integrated with a microfluidic system for liquid sample delivery. Extensive work was dedicated to developing a top-down fabrication process of the sensors as well as an effective passivation scheme. The operation mechanism and coupling efficiencies of different gate configurations were studied experimentally with the assistance of numerical simulation and equivalent circuits. Using pH sensing as a model system, large effort was devoted to identifying sources for false responses resulting from the instability of the inert-metal gate electrode. In addition, the drift mechanism of the sensor operating in electrolyte was addressed and a calibration model was proposed. Furthermore, protein detection experiments were performed using small-sized Affibody molecules as receptors on the gate insulator to tackle the Debye screening issue. Preliminary results showed that the directionality of the current changes in the sensors was in good agreement with the charge polarities of the proteins. Finally, a graphene-based capacitor was examined as an alternative to the nanowire device for field-effect ion sensing. Our initial attempts showed some attractive features of the capacitor sensor.
  •  
39.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Impact of H-uptake by forming gas annealing and ion implantation on photoluminescence of Si-nanoparticles
  • 2018
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : John Wiley & Sons. - 1862-6300 .- 1862-6319. ; 215:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon nanoparticles (SiNPs) are formed by implanting 70 keV Si+ into a SiO2-film and subsequent thermal annealing. SiNP samples are further annealed in forming gas. Another group of samples containing SiNP is implanted by 7.5 keV H+ and subsequently annealed in N2-atmosphere at 450 °C to reduce implantation damage. Nuclear reaction analysis (NRA) is employed to establish depth profiles of the H-concentration. Enhanced hydrogen concentrations are found close to the SiO2surface, with particularly high concentrations for the as-implanted SiO2. However, no detectable uptake of hydrogen is observed by NRA for samples treated by forming gas annealing (FGA). H-concentrations detected after H-implantation follow calculated implantation profiles. Photoluminescence (PL) spectroscopy is performed at room temperature to observe the SiNP PL. Whereas FGA is found to increase PL under certain conditions, i.e., annealing at high temperatures, increasing implantation fluence of H reduces the SiNP PL. Hydrogen implantation also introduces additional defect PL. After low-temperature annealing, the SiNP PL is found to improve, but the process is not found equivalently efficient as conventional FGA.
  •  
40.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Influence of Swift Heavy Ion Irradiation on the Photoluminescence of Si-nanoparticles and Defects in SiO2
  • 2017
  • Ingår i: Nanotechnology. - : IOP PUBLISHING LTD. - 0957-4484 .- 1361-6528. ; 28:37
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of swift heavy ion (SHI) irradiation on the photoluminescence (PL) of silicon nanoparticles (SiNPs) and defects in SiO2-film is investigated. SiNPs were formed by implantation of 70 keV Si+ and subsequent thermal annealing to produce optically active SiNPs and to remove implantation-induced defects. Seven different ion species with energy between 3-36 MeV and fluence from 10(11)-10(14) cm(-2) were employed for irradiation of the implanted samples prior to the thermal annealing. Induced changes in defect and SiNP PL were characterized and correlated with the specific energy loss of the employed SHIs. We find that SHI irradiation, performed before the thermal annealing process, affects both defect and SiNP PL. The change of defect and SiNP PL due to SHI irradiation is found to show a threshold-like behaviour with respect to the electronic stopping power, where a decrease in defect PL and an anticorrelated increase in SiNP PL after the subsequent thermal annealing are observed for electronic stopping exceeding 3-5 keV nm(-1). PL intensities are also compared as a function of total energy deposition and nuclear energy loss. The observed effects can be explained by ion track formation as well as a different type of annealing mechanisms active for SHI irradiation compared to the thermal annealing.
  •  
41.
  •  
42.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Luminescence of silicon nanoparticles from oxygen implanted silicon
  • 2018
  • Ingår i: Materials Science in Semiconductor Processing. - : Elsevier. - 1369-8001 .- 1873-4081. ; 86, s. 18-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen with a kinetic energy of 20 keV is implanted in a silicon wafer (100) at different fluences, followed by post-implantation thermal annealing (PIA) performed at temperatures ranging from 1000 to 1200 degrees C, in order to form luminescent silicon nanoparticles (SiNPs) and also to reduce the damage induced by the implantation. As a result of this procedure, a surface SiOx layer (with 0 < x < 2) with embedded crystalline Si nanoparticles has been created. The samples yield similar luminescence in terms of peak wavelength, lifetime, and absorption as recorded from SiNPs obtained by the more conventional method of implanting silicon into silicon dioxide. The oxygen implantation profile is characterized by elastic recoil detection (ERD) technique to obtain the excess concentration of Si in a presumed SiO2 environment. The physical structure of the implanted Si wafer is examined by grazing incidence X-ray diffraction (GIXRD). Photoluminescence (PL) techniques, including PL spectroscopy, time-resolved PL (TRPL), and photoluminescence excitation (PLE) spectroscopy are carried out in order to identify the PL origin. The results show that luminescent SiNPs are formed in a Si sample implanted by oxygen with a fluence of 2 x 10(17) atoms cm(-2) and PIA at 1000 degrees C. These SiNPs have a broad size range of 6-24 nm, as evaluated from the GIXRD result. Samples implanted at a lower fluence and/or annealed at higher temperature show only weak defect-related PL. With further optimization of the SiNP luminescence, the method may offer a simple route for integration of luminescent Si in mainstream semiconductor fabrication.
  •  
43.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • MeV ion irradiation effects on the luminescence properties of Si-implanted SiO2-thin films
  • 2016
  • Ingår i: Physica Status Solidi (C) Current Topics in Solid State Physics. - : Wiley-VCH Verlagsgesellschaft. - 1862-6351 .- 1610-1634 .- 1610-1642. ; 13:10-12, s. 921-926
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of MeV heavy ion irradiation at varying fluence and flux on excess Si, introduced in SiO2 by keV ion implantation, are investigated by photoluminescence (PL). From the PL peak wavelength (λ) and decay lifetime (τ), two PL sources are distinguished: i) quasi-direct recombination of excitons of Si-nanoparticles (SiNPs), appearing after thermal annealing (λ > 720 nm, τ ∼ μs), and ii) fast-decay PL, possibly due to oxide-related defects (λ ∼ 575-690 nm, τ ∼ ns). The fast-decay PL (ii) observed before and after ion irradiation is induced by ion implantation. It is found that this fast-decay luminescence decreases for higher irradiation fluence of MeV heavy ions. After thermal annealing (forming SiNPs), the SiNP PL is reduced for samples irradiated by MeV heavy ions but found to stabilize at higher level for higher irradiation flux; the (ii) band vanishes as a result of annealing. The results are discussed in terms of the influence of electronic and nuclear stopping powers.
  •  
44.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Si-nanoparticle synthesis using ion implantation and MeV ion irradiation
  • 2015
  • Ingår i: Physica Status Solidi (C) Current Topics in Solid State Physics. - : Wiley-VCH Verlagsgesellschaft. - 1862-6351.
  • Tidskriftsartikel (refereegranskat)abstract
    • A dielectric matrix with embedded Si-nanoparticles may show strong luminescence depending on nanoparticles size, surface properties, Si-excess concentration and matrix type. Ion implantation of Si ions with energies of a few tens to hundreds of keV in a SiO2 matrix followed by thermal annealing was identified as a powerful method to form such nanoparticles. The aim of the present work is to optimize the synthesis of Si-nanoparticles produced by ion implantation in SiO2 by employing MeV ion irradiation as an additional annealing process. The luminescence properties are measured by spectrally resolved photoluminescence including PL lifetime measurement, while X-ray reflectometry, atomic force microscopy and ion beam analysis are used to characterize the nanoparticle formation process. The results show that the samples implanted at 20%-Si excess atomic concentration display the highest luminescence and that irradiation of 36 MeV 127I ions affects the luminosity in terms of wavelength and intensity. It is also demonstrated that the nanoparticle luminescence lifetime decreases as a function of irradiation fluence.
  •  
45.
  • Chung, Nguyen Xuan, et al. (författare)
  • Optimized electrochemical breakdown etching using temporal voltage variation for formation of nanopores in a silicon membrane
  • 2021
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 331
  • Tidskriftsartikel (refereegranskat)abstract
    • Dielectric breakdown etching is a well-known method of making nanopores on thin (similar to 50 nm) dielectric membranes. However, voltage driven translocation of biomolecules through such nanopores becomes extremely fast. For improved detection, for instance by the current blockage, a high-aspect-ratio nanopore could be beneficial for slowing down the translocation. High-aspect-ratio nanopore on silicon fabrication requires a well-controlled process and is dependent on specific crystal orientation, dopant type and resistivity of substrate. Therefore, an optimized method of processing high-aspect-ratio nanopores is necessary considering the advantage of a silicon membrane being able to be integrated with standard CMOS processing. Here, we present an optimized fabrication method for mass-producing a single and an array of nanopores on a thick (2 mu m) silicon device layer based on a silicon-on-insulator (SOI) wafer. A method of temporal voltage variation is exploited to optimize the etching parameters for the nanopore formation during electrochemical breakdown etching, diameters of nanopores around 12 nm have been achieved. Besides, the correlation between the parameters of etching and nanopore diameter is deduced. The processed high-aspect-ratio nanopore enables applications in single-molecule sensing such as DNA, exosomes, viruses, and protein markers. The developed process is inexpensive, fast and can be batch fabricated.
  •  
46.
  • Ciobanu, V., et al. (författare)
  • Large-Sized Nanocrystalline Ultrathin β-Ga2 O3 Membranes Fabricated by Surface Charge Lithography
  • 2022
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-sized 2D semiconductor materials have gained significant attention for their fascinat-ing properties in various applications. In this work, we demonstrate the fabrication of nanoperforated ultrathin β-Ga2 O3 membranes of a nanoscale thickness. The technological route includes the fabrication of GaN membranes using the Surface Charge Lithography (SCL) approach and subsequent thermal treatment in air at 900◦ C in order to obtain β-Ga2 O3 membranes. The as-grown GaN membranes were discovered to be completely transformed into β-Ga2 O3, with the morphology evolving from a smooth topography to a nanoperforated surface consisting of nanograin structures. The oxidation mechanism of the membrane was investigated under different annealing conditions followed by XPS, AFM, Raman and TEM analyses. 
  •  
47.
  • Dev, Apurba, et al. (författare)
  • Electrokinetic effect for molecular recognition : A label-free approach for real-time biosensing
  • 2016
  • Ingår i: Biosensors & bioelectronics. - : Elsevier. - 0956-5663 .- 1873-4235. ; 82, s. 55-63
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a simple and inexpensive method for label-free detection of biomolecules. The method monitors the changes in streaming current in a fused silica capillary as target biomolecules bind to immobilized receptors on the inner surface of the capillary. To validate the concept, we show detection and time response of different protein-ligand and protein-protein systems: biotin-avidin and biotin-streptavidin, barstar-dibarnase and Z domain-immunoglobulin G (IgG). We show that specific binding of these biomolecules can be reliably monitored using a very simple setup. Using sequential injections of various proteins at a diverse concentration range and as well as diluted human serum we further investigate the capacity of the proposed technique to perform specific target detection from a complex sample. We also investigate the time for the signal to reach equilibrium and its dependence on analyte concentration and demonstrate that the current setup can be used to detect biomolecules at a concentration as low as 100 pM without requiring any advanced device fabrication procedures. Finally, an analytical model based on diffusion theory has been presented to explain the dependence of the saturation time on the analyte concentration and capillary dimensions and how reducing length and inner diameter of the capillary is predicted to give faster detection and in practice also lower limit of detection.
  •  
48.
  •  
49.
  •  
50.
  • Domeij, Martin, et al. (författare)
  • Avalanche injection in high voltage Si PiN diodes
  • 1997
  • Ingår i: Physica scripta. T. - 0281-1847. ; T69, s. 134-137
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental technique using optical excitation by a YAG laser pulse for studying avalanche injection in power devices is demonstrated This technique enables the creation of high uniform excess carrier concentrations in an optically defined device volume, involving very little heating. A method for determining the onset of avalanche multiplication, by studying the time integral of the reverse recovery current, is proposed. A PiN diode is observed to turn off from avalanching at a dissipated power density of more than 200 kW/cm(2).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 183
Typ av publikation
tidskriftsartikel (137)
konferensbidrag (19)
doktorsavhandling (14)
annan publikation (10)
bokkapitel (3)
Typ av innehåll
refereegranskat (154)
övrigt vetenskapligt/konstnärligt (28)
populärvet., debatt m.m. (1)
Författare/redaktör
Linnros, Jan (136)
Sychugov, Ilya (53)
Linnros, Jan, 1953- (34)
Dev, Apurba (17)
Bruhn, Benjamin (17)
Grivickas, V (15)
visa fler...
Valenta, Jan (14)
Sangghaleh, Fatemeh (14)
Pevere, Federico (14)
Badel, Xavier (13)
Eriksson Karlström, ... (12)
Hallén, Anders. (11)
Galeckas, A. (11)
Valenta, J. (10)
Galeckas, Augustinas (9)
Elfström, Niklas (9)
Schmidt, Torsten (8)
Kleimann, P. (7)
Grivickas, P (7)
Pirouz, P. (7)
Cavallaro, Sara (7)
Sahu, Siddharth S. (7)
Primetzhofer, Daniel (6)
Viktorsson, Kristina (6)
Zhang, Miao (6)
Chulapakorn, Thawatc ... (6)
Suvanam, Sethu Saved ... (6)
Afrasiabi, Roodabeh (5)
Linnros, Jan, Profes ... (5)
Lewensohn, Rolf (5)
Domeij, Martin (5)
Jokilaakso, Nima (4)
Björk, Per (4)
Yun, Sang Ho (4)
Bikbajevas, V (4)
Gatty, Hithesh K. (4)
Zhang, Miao, 1985- (4)
Breitholtz, Bo (4)
Marinins, Aleksandrs (4)
Petersson, C. Sture (3)
Östling, Mikael (3)
Li, F. (3)
Nagy, Abel (3)
Popov, Sergei (3)
Thormann, Esben (3)
Horak, Josef (3)
Haag, Petra (3)
Stiller, Christiane (3)
Hååg, Petra (3)
Linnros, Jan T. (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (176)
Uppsala universitet (24)
RISE (9)
Karolinska Institutet (6)
Mittuniversitetet (5)
Linköpings universitet (2)
Språk
Engelska (183)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (90)
Teknik (58)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy