SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lisenfeld U.) "

Sökning: WFRF:(Lisenfeld U.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alatalo, K., et al. (författare)
  • STRONG FAR-INFRARED COOLING LINES, PECULIAR CO KINEMATICS, AND POSSIBLE STAR-FORMATION SUPPRESSION IN HICKSON COMPACT GROUP 57
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 795:2, s. 159-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L-FIR and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H-2 emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.
  •  
2.
  • Cheng, Cheng, et al. (författare)
  • Deep H i Mapping of Stephan's Quintet and Its Neighborhood
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 954:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out deep mapping observations of the atomic hydrogen (H i) 21 cm line emission in a field centered on the famous galaxy group Stephan's Quintet (SQ), using the Five-hundred-meter Aperture Spherical Telescope (FAST) equipped with a 19-beam receiver. The final data cube reaches an H i column density sensitivity of 5σ = 2.1 × 1017 cm-2 per 20 km s-1 channel with an angular resolution of 4.′0. The discovery of a large diffuse feature of the H i emission in the outskirts of the intragroup medium of SQ was reported in a previous paper (Xu et al.). Here we present a new study of the total H i emission of SQ and the detection of several neighboring galaxies, exploiting the high sensitivity and the large sky coverage of the FAST observations. A total H i mass of M H I = 3.48 ± 0.35 × 1010 M ☉ is found for SQ, which is significantly higher than previous measurements in the literature. This indicates that, contrary to earlier claims, SQ is not H i deficient. The excessive H i gas is mainly found in the velocity ranges of 6200-6400 km s-1 and 6800-7000 km s-1, which were undetected in previous observations that are less sensitive than ours. Our results suggest that the "missing H i"in compact groups may be hidden in the low-density diffuse neutral gas instead of in the ionized gas.
  •  
3.
  • Xu, C. K., et al. (författare)
  • A 0.6 Mpc H i structure associated with Stephan’s Quintet
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 610:7932, s. 461-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Stephan’s Quintet (SQ, co-moving radial distance = 85 ± 6 Mpc, taken from the NASA/IPAC Extragalactic Database (NED)1) is unique among compact groups of galaxies2–12. Observations have previously shown that interactions between multiple members, including a high-speed intruder galaxy currently colliding into the intragroup medium, have probably generated tidal debris in the form of multiple gaseous and stellar filaments6,8,13, the formation of tidal dwarfs7,14,15 and intragroup-medium starbursts16, as well as widespread intergalactic shocked gas5,10,11,17. The details and timing of the interactions and collisions remain poorly understood because of their multiple nature18,19. Here we report atomic hydrogen (H i) observations in the vicinity of SQ with a smoothed sensitivity of 1σ = 4.2 × 1016 cm−2 per channel (velocity bin-width Δv = 20 km s−1; angular resolution = 4′), which are about two orders of magnitude deeper than previous observations8,13,20,21. The data show a large H i structure (with linear scale of around 0.6 Mpc) encompassing an extended source of size approximately 0.4 Mpc associated with the debris field and a curved diffuse feature of length around 0.5 Mpc attached to the south edge of the extended source. The diffuse feature was probably produced by tidal interactions in early stages of the formation of SQ (>1 Gyr ago), although it is not clear how the low-density H i gas (NH i≲ 1018 cm−2) can survive the ionization by the intergalactic ultraviolet background on such a long time scale. Our observations require a rethinking of properties of gas in outer parts of galaxy groups and demand complex modelling of different phases of the intragroup medium in simulations of group formation.
  •  
4.
  • Xu, C. K., et al. (författare)
  • NOEMA observations of CO emission in Arp 142 and Arp 238
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 918:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have shown significant differences in the enhancement of the star formation rate (SFR) and star formation efficiency (SFE = SFR/Mmol) between spiral–spiral and spiral–elliptical mergers. In order to shed light on the physical mechanism of these differences, we present NOEMA observations of the molecular gas distribution and kinematics (linear resolutions of ∼2 kpc) in two representative close major-merger star-forming pairs: the spiral–elliptical pair Arp 142 and the spiral–spiral pair Arp 238. The CO in Arp 142 is widely distributed over a highly distorted disk without any nuclear concentration, and an off-center ringlike structure is discovered in channel maps. The SFE varies significantly within Arp 142, with a starburst region (region 1) near the eastern tip of the distorted disk showing an SFE ∼ 0.3 dex above the mean of the control sample of isolated galaxies and the SFE of the main disk (region 4) 0.43 dex lower than the mean of the control sample. In contrast, the CO emission in Arp 238 is detected only in two compact sources at the galactic centers. Compared to the control sample, Arp 238-E shows an SFE enhancement of more than 1 dex, whereas Arp 238-W has an enhancement of ∼0.7 dex. We suggest that the extended CO distribution and large SFE variation in Arp 142 are due to an expanding large-scale ring triggered by a recent high-speed head-on collision between the spiral galaxy and the elliptical galaxy, and the compact CO sources with high SFEs in Arp 238 are associated with nuclear starbursts induced by gravitational tidal torques in a low-speed coplanar interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy