SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Dedi) "

Sökning: WFRF:(Liu Dedi)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cui, Wen, et al. (författare)
  • Synthesis of alkali-metal-doped C60 nanotubes
  • 2011
  • Ingår i: Diamond and Related Materials. - : Elsevier BV. ; , s. 93-96
  • Konferensbidrag (refereegranskat)abstract
    • C60 nanotubes have been synthesized by a solution–solution method. After degassing in a dynamic vacuum, the C60 nanotubes were doped with alkali metals by means of vapor evaporation method. Different temperatures have been studied to evaporate the alkali metals for the doping experiments. Raman spectrum was further employed to analyze the doping concentration of the obtained samples. It was found that all three alkali metals (Li, Na and K) used can be efficiently doped into the C60 nanotubes, forming AxC60 nanotubes. The doping concentration of Li, Na changed from low to high level, depending on the experiment temperatures, while K doping always gave saturated doping. The melt points, the ionic sizes and vapor pressures of alkali metals were thought to affect the final doping results.
  •  
2.
  • Liu, Dedi, et al. (författare)
  • Pressure-induced phase transitions of C70 nanotubes
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society. - 1932-7447 .- 1932-7455. ; 115:18, s. 8918-8922
  • Tidskriftsartikel (refereegranskat)abstract
    • Single crystalline C70 nanotubes having a face-centered-cubic (fcc) structure with diameters on a nanometer scale were synthesized by a facile solution method. In situ high pressure Raman spectroscopy and X-ray diffraction have been employed to study the structural stability and phase transitions of the pristine sample. We show that the molecular orientation-related phase transition from the fcc structure to a rhombohedral structure occurs at about 1.5 GPa, which is 1 GPa higher than in bulk C70. Also, the C70 molecules themselves are more stable in the nanotubes than in bulk crystals, manifested by a partial amorphization at 20 GPa. The crystal structure of C70 nanotubes could partially return to the initial structure after a pressure cycle above 30.8 GPa, and the C70 molecules were intact up to 43 GPa. The bulk modulus of C70 nanotubes is measured to be 50 GPa, which is twice larger than that of bulk C70.
  •  
3.
  • Wang, Lin, et al. (författare)
  • Synthesis and high pressure induced amorphization of C60 nanosheets
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:10, s. 103112-
  • Tidskriftsartikel (refereegranskat)abstract
    • C-60 nanosheets with thicknesses in the nanometer range were synthesized by a simple method. Compared to bulk C-60, the lattice of the nanosheets is expanded by about 0.4%. In situ Raman spectroscopy and energy-dispersive x-ray diffraction under high pressures have been employed to study the structure of the nanosheets. The studies indicate that the bulk modulus of the C-60 nanosheets is significantly larger than that of bulk C-60. The C-60 cages in nanosheets can persist at pressures over 30 GPa, 3 GPa higher than for bulk C-60. These results suggest that C-60 crystals in even small size will be a potential candidate of superhard materials.
  •  
4.
  • Liu, Dedi, et al. (författare)
  • Effects of alcohols on shape-tuning and luminescence-enhancing of C70 nanocrystals
  • 2013
  • Ingår i: Optical materials (Amsterdam). - : Elsevier. - 0925-3467 .- 1873-1252. ; 36:2, s. 449-454
  • Tidskriftsartikel (refereegranskat)abstract
    • C70 nanotubes, nanorods and nanoparticles were produced by introducing a series of alcohols as precipitant into a C70/m-xylene solution. The effects of alcohols with different carbon chain lengths on the shape control of C70 nanocrystals were investigated. Alcohols with more than two carbon atoms in the longest chain linked to the hydroxyl groups induced the formation of C70 nanotube/rods. In contrast, alcohols containing two or fewer carbon atoms resulted in C70 nanoparticles. Structural analysis indicated that alcohol molecules exist in the C70 nanocrystals, forming solvated structures. The freshly formed C70 nanotubes and nanoparticles have orthorhombic and hexagonal solvated structures, respectively. Room temperature photoluminescence was further carried out on the solvated C70 nanocrystals to investigate their optical properties. We found that the luminescence intensities of C70 nanocrystals were significantly enhanced by the introduction of alcohols.
  •  
5.
  • Liu, Dedi, et al. (författare)
  • In situ Raman and photoluminescence study on pressure-induced phase transition in C60 nanotubes
  • 2012
  • Ingår i: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 43:6, s. 737-740
  • Tidskriftsartikel (refereegranskat)abstract
    • Single crystalline C60 nanotubes having face-centered-cubic structure with diameters in the nanometer range were synthesized by a solution method. In situ Raman and photoluminescence spectroscopy under high pressure were employed to study the structural stabilities and transitions of the pristine C60 nanotubes. A phase transition, probably because of the orientational ordering of C60 molecules, from face-centered-cubic structure to simple cubic structure occurred at the pressure between 1.46 and 2.26 GPa. At above 20.41 GPa, the Raman spectrum became very diffuse and lost its fine structure in all wavenumber regions, and only two broad and asymmetry peaks initially centered at 1469 and 1570cm-1 were observed, indicating an occurrence of amorphization. This amorphous phase remained to be reversible until 31.1 GPa, and it became irreversible to the ambient pressure after the pressure cycle of 34.3 GPa was applied.
  •  
6.
  • Liu, Dedi, et al. (författare)
  • Photoluminescence changes of C70 nano/submicro-crystals induced by high pressure and high temperature
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hollow C70 nano/submicrocrystals with a fcc lattice structure were treated under various high pressure and high temperature conditions. The energy band structure was visibly changed by the high pressure and high temperature treatment, and the luminescence of the polymerized C70 nano/submicrocrystals was tuned from the visible to the near infrared range. In-situ high pressure experiments at room temperature indicate that pressure plays a key role in the tuning of band gap and PL properties in C70 nanotubes, and temperature plays an important role in the formation of stable intermolecular bonds and thus to define the final red-shift of the PL peaks. The polymeric phases of C70 nanocrystals treated at high pressure and high temperature were identified from Raman spectra, which changed from monomers to a dimer-rich phase and finally to a phase containing larger, disordered C70 oligomers.
  •  
7.
  • Wang, Lin, et al. (författare)
  • High-pressure studies of Nano/sub-micrometer C70 rods
  • 2005
  • Ingår i: High Energy Physics and Nuclear Physics B. - 0254-3052. ; 29:Supplement, s. 112-115
  • Tidskriftsartikel (refereegranskat)abstract
    • We have successfully synthesized C-70 rods in nano/sub-micrometers scale by evaporating solvent method. The diameter of the as grown C-70 rods is similar to 500 nm, and the length is similar to 10 mu m. The EDXD pattern and Raman spectroscopy for as -grown sample indicate that the as grown C-70 rod is in hcp structure. The pressure-induced structural phase transition has been studied by using DAC combined with EDXD and Raman spectroscopy methods under quasi-hydrostatic pressure up to 26.1GPa. It is found that hcp structure transforms into amorphous phase for C-70 rods in the pressure range from 23.3 to 26.1GPa, which is higher than the transformation pressure for bulk C-70 crystals. The phase transition is irreversible and it is induced by the collapse of C-70 cage.
  •  
8.
  • Hou, Yuanyuan, et al. (författare)
  • Comparative study of pressure-induced polymerization of C60 nanorods and single crystals
  • 2007
  • Ingår i: Journal of Physics Condensed Matter. - Bristol : Institute of Physics. - 0953-8984 .- 1361-648X. ; 19:42, s. 425207-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report a comparative study of pressure-induced polymerization in C60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases.
  •  
9.
  • Hou, Yuanyuan, et al. (författare)
  • Photoluminescence properties of high-pressure-polymerized C60 nanorods in the orthorhombic and tetragonal phases.
  • 2006
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 89:18, s. 181925-
  • Tidskriftsartikel (refereegranskat)abstract
    • C60nanorods in two polymeric phases have been synthesized under differenthigh pressure and high temperature conditions. Orthorhombic and tetragonal phaseshave been identified from Raman spectra. The rod shape canbe kept under quasihydrostatic pressure. The photoluminescence intensity of thepolymeric C60 nanorods has been greatly enhanced compared with thatof pristine C60 nanorods. The main fluorescence band shifted from730  nm in the unpolymeric phase to 748  nm and near infrared780  nm in the orthorhombic and tetragonal phases, respectively. The enhancedphotoluminescence with tunable frequency for different polymeric C60 nanorods suggestspotential applications in luminescent nanomaterials.
  •  
10.
  • Liu, Bingbing, et al. (författare)
  • High pressure and high temperature induced polymeric C60 nanocrystal
  • 2008
  • Ingår i: Diamond and related materials, vol. 17, issue 4-5. - Amsterdam : Elsevier B.V.. ; , s. 620-623
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, C60 nanosheets with polymeric phases have been obtained under various high pressures and high temperatures, including orthorhombic and tetragonal polymeric phases. The structures have been identified and compared with those of nanorods by photoluminescence and Raman spectroscopies. The main fluorescence band shifted from 1.70 eV in the monomeric phase to near infrared in the polymeric phase when pressure and temperature were increased. The difference of photoluminescence and Raman spectra between nanosheets and nanorods samples treated under the same conditions is probably caused by different polymerization degree in these samples because of different shapes.
  •  
11.
  • Liu, Dedi, et al. (författare)
  • Synthesis and solid-state studies of self-assembled C60 microtubes
  • 2011
  • Ingår i: Diamond and Related Materials, vol. 20 issue 2. - : Elsevier BV. ; , s. 178-182
  • Konferensbidrag (refereegranskat)abstract
    • C60 microtubes were fabricated by a modified solution evaporation method, evaporating a solution of C60 in toluene in an atmosphere of m-xylene at room temperature. The C60 microtubes have outer diameters ranging from 2 to 8 μm. IR spectra, TG analysis and X-ray diffraction showed a solvated structure for the as-grown C60 microtubes. Through a gentle heat-treatment in vacuum, pure C60 microtubes with single crystalline fcc structure were obtained after the elimination of solvents. It is suggested that the C60 microtubes form through self-assembly from several individual C60 nanorods.
  •  
12.
  • Wang, Lin, et al. (författare)
  • Highly Enhanced Luminescence from Single-Crystalline C60·1m-xylene Nanorods
  • 2006
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 18:17, s. 4190-4194
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-crystalline C60â1m-xylene nanorods with a hexagonal structure were successfully synthesizedby evaporating a C60 solution in m-xylene at room temperature. The ratio of the length to the diameterof the nanorods can be controlled in the range of 10 to over 1000 for different applications. Thephotoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that forpristine C60 crystals in air. Both UV and Raman results indicate that there is no charge transfer betweenC60 and m-xylene. It was found that the interaction between C60 and m-xylene molecules is of the vander Waals type. This interaction reduces the icosahedral symmetry of C60 molecule and induces strongPL from the solvate nanorods.
  •  
13.
  • Wang, Lin, et al. (författare)
  • Synthesis of thin, rectangular C60 nanorods using m-xylene as shape controller
  • 2006
  • Ingår i: Advanced Materials. - : Wiley Interscience. - 0935-9648 .- 1521-4095. ; 18:14, s. 1883-1888
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin, rectangular C60 nanorods in face-centered cubic structure are synthesized by using m-xylene as a shape controller. These unusual nanorods can easily grow on various substrates. The smallest nanorods have widths smaller than 30 nm. The nanorods are highly crystalline in single phase. A significant expansion of the lattice constant is also found in the C60 nanorods when their widths decrease below about 80 nm. 
  •  
14.
  • Yao, Mingguang, et al. (författare)
  • Synthesis of differently shaped C(70) nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence
  • 2012
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 50:1, s. 209-215
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a simple synthesis of Cm microcrystals by a fast solvent-assisted evaporation method by selectively using aromatic solvents with halogen radicals as a controller. In a detailed analysis we show that depending on solvent, C(70) concentration in the solution, and synthesis temperature both C(70) microrods and microcubes can be produced. The samples were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. From meta-type solvents microrods or microcrystal cubes grow with a single orthorhombic or a monoclinic structure or a mixture of both. These crystals show traces of solvents in the structure. From para-type solvents cubic (or rectangular) crystals grow with a hexagonal structure and with no trace of solvents. Room temperature photoluminescence (PL) of the C(70) crystal samples reveals that the PL efficiency of the crystals increases with crystalline order and that the best crystalline Cm cube crystals show 10 times higher PL efficiency than that of pristine C(70) polycrystalline samples. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
15.
  • Zou, Yonggang, et al. (författare)
  • Rotational dynamics of confined C60 from near-infrared Raman studies under high pressure
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:52, s. 22135-22138
  • Tidskriftsartikel (refereegranskat)abstract
    • Peapods present a model system for studying the properties of dimensionally constrained crystal structures, whose dynamical properties are very important. We have recently studied the rotational dynamics of C60 molecules confined inside single walled carbon nanotube (SWNT) by analyzing the intermediate frequency mode lattice vibrations using near-infrared Raman spectroscopy. The rotation of C60 was tuned to a known state by applying high pressure, at which condition C60 first forms dimers at low pressure and then forms a single-chain, nonrotating, polymer structure at high pressure. In the latter state the molecules form chains with a 2-fold symmetry. We propose that the C60 molecules in SWNT exhibit an unusual type of ratcheted rotation due to the interaction between C60 and SWNT in the “hexagon orientation,” and the characteristic vibrations of ratcheted rotation becomes more obvious with decreasing temperature.
  •  
16.
  • Liu, Dedi, et al. (författare)
  • High pressure and high temperature induced polymerization of C60 nanotubes
  • 2011
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry. - 1466-8033. ; 13:10, s. 3600-3605
  • Tidskriftsartikel (refereegranskat)abstract
    • C60 nanotubes with outer diameters ranging from 400–800 nm were polymerized at 1.5 GPa, 573 K and 2.0 GPa, 700 K, respectively. Raman and photoluminescence spectroscopy were employed to characterize the polymeric phases of the treated samples. Both Raman and photoluminescence spectra showed that the C60 nanotubes transformed into the dimer and orthorhombic phases under the two different conditions, respectively. The photoluminescence peaks were tuned from visible to near infrared range. Comparative studies indicated that C60 nanotubes were more difficult to polymerize than bulk C60 material under the same conditions due to the nanoscale size effect in the C60 nanotubes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy