SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Lifang 1979) "

Sökning: WFRF:(Liu Lifang 1979)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Lifang, 1979, et al. (författare)
  • Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae
  • 2014
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 21, s. 9-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to limitations associated with whole blood for transfusions (antigen compatibility, transmission of infections, supply and storage), the use of cell-free hemoglobin as an oxygen carrier substitute has been in the center of research interest for decades. Human hemoglobin has previously been synthesized in yeast, however the challenge is to balance the expression of the two different globin subunits, as well as the supply of the prosthetic heme required for obtaining the active hemoglobin (alpha(2)beta(2)). In this work we evaluated the expression of different combinations of alpha and beta peptides and combined this with metabolic engineering of the heme biosynthetic pathway. Through evaluation of several different strategies we showed that engineering the biosynthesis pathway can substantially increase the heme level in yeast cells, and this resulted in a significant enhancement of human hemoglobin production. Besides demonstration of improved hemoglobin production our work demonstrates a novel strategy for improving the production of complex proteins, especially multimers with a prosthetic group. Crown Copyright (C) 2013 Published by Elsevier Inc. on behalf of International Metabolic Engineering Society. All rights reserved.
  •  
2.
  • Liu, Lifang, 1979, et al. (författare)
  • Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae
  • 2015
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 15:7, s. 10-
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested in increasing recombinant protein production under aerobic conditions so we focused on Rox1p regulation. Rox1p is a transcriptional regulator, which in oxidative conditions represses genes induced in hypoxia. We deleted ROX1 and studied the effects on the production of recombinant proteins in Saccharomyces cerevisiae. Intriguingly, we found a 100% increase in the recombinant fungal alpha-amylase yield, as well as productivity. Varied levels of improvements were also observed for the productions of the human insulin precursor and the yeast endogenous enzyme invertase. Based on the genome-wide transcriptional response, we specifically focused on the effect of UPC2 upregulation on protein production and suggested a possible mechanistic explanation.
  •  
3.
  • Liu, Zihe, 1984, et al. (författare)
  • Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering
  • 2014
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 1098-5336 .- 0099-2240. ; 80:17, s. 5542-5550
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.
  •  
4.
  • Liu, Lifang, 1979, et al. (författare)
  • Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae
  • 2014
  • Ingår i: BMC Systems Biology. - : Springer Science and Business Media LLC. - 1752-0509. ; 8:73
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results: Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three a-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion: In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.
  •  
5.
  • Liu, Lifang, 1979 (författare)
  • Systems Biology of Recombinant Protein Production by Fungi
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Systems biology has emerged as a highly potent tool for studying biological processes over the last decades. However, its application to complex metabolic processes such as protein secretion is still at the infant stage. Saccharomyces cerevisiae and Aspergillus oryzae are two important fungal cell factories which occupy significant proportions of recombinant protein productions, whereas various bottlenecks and undiscovered mechanisms limit their full potential as robust hosts.In this thesis, systems biology approaches were applied to explore these two organisms in respect of protein production. By utilizing and engineering the yeast endogenous heme synthesis, we demonstrated the possibility for efficient production of complex proteins (e.g. multimer with a prosthetic group) by yeast. Applying inverse metabolic engineering, we identified many genomic variants that may contribute to improve protein secretion in yeast. Specifically, we examined the effect of a single point mutation on VTA1 encoding a regulatory protein in the MVB pathway in endocytosis. Our result suggests that the VTA1S196I mutation might help to accelerate nutrient uptake via endocytosis, which subsequently enhanced protein synthesis and secretion. Oxygen is an important element associated with normal cellular metabolism as well as protein production. We studied how Rox1p, a heme-dependent transcription repressor of many hypoxia-induced genes, affect protein production in yeast, under aerobic conditions. By knocking out ROX1, we observed a 100% increase in the α-amylase production. Through genome wide transcriptome analysis we identified several Rox1p targets and based on this suggested their roles in improving protein productions. Lastly, applying comparative genomics study, we enriched the list of core protein components involved in the secretory machinery of A. oryzae. To verify the list, several high α-amylase producing strains were constructed. The transcriptional responses of these strains to α-amylase production were studied using microarray, through which several strategies including overexpressing the up-regulated cell wall proteins EglD and Cwp1 and knocking out the genes encoding extracellular proteins competing for the secretory pathway, were proposed.
  •  
6.
  • Martinez Ruiz, Jose Luis, 1981, et al. (författare)
  • Engineering the Oxygen Sensing Regulation Results in an Enhanced Recombinant Human Hemoglobin Production by Saccharomyces cerevisiae
  • 2015
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 112:1, s. 181-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient production of appropriate oxygen carriers for transfusions (blood substitutes or artificial blood) has been pursued for many decades, and to date several strategies have been used, from synthetic polymers to cell-free hemoglobin carriers. The recent advances in the field of metabolic engineering also allowed the generation of different genetically modified organisms for the production of recombinant human hemoglobin. Several studies have showed very promising results using the bacterium Escherichia coli as a production platform, reporting hemoglobin titers above 5% of the total cell protein content. However, there are still certain limitations regarding the protein stability and functionality of the recombinant hemoglobin produced in bacterial systems. In order to overcome these limitations, yeast systems have been proposed as the eukaryal alternative. We recently reported the generation of a set of plasmids to produce functional human hemoglobin in Saccharomyces cerevisiae, with final titers of active hemoglobin exceeding 4% of the total cell protein. In this study, we propose a strategy for further engineering S. cerevisiae by altering the oxygen sensing pathway by deleting the transcription factor HAP1, which resulted in an increase of the final recombinant active hemoglobin titer exceeding 7% of the total cellular protein.
  •  
7.
  • Martinez Ruiz, Jose Luis, 1981, et al. (författare)
  • Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation
  • 2012
  • Ingår i: Current Opinion in Biotechnology. - : Elsevier BV. - 0958-1669 .- 1879-0429. ; 23:6, s. 965-971
  • Forskningsöversikt (refereegranskat)abstract
    • Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis techniques (the so-called - omics approaches) and integrative approaches (systems biology) allow the development of novel microbial cell factories as valuable platforms for large scale production of therapeutic proteins. This review summarizes the main achievements and the current situation in the field of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes.
  •  
8.
  • Qin, J., et al. (författare)
  • Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 6:Sept., s. Art. no. 8224-
  • Tidskriftsartikel (refereegranskat)abstract
    • Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway intermediates can serve as platform cell factories for production of such products. Here we implement a modular pathway rewiring (MPR) strategy and demonstrate its use for pathway optimization resulting in high-level production of L-ornithine, an intermediate of L-arginine biosynthesis and a precursor metabolite for a range of different natural products. The MPR strategy involves rewiring of the urea cycle, subcellular trafficking engineering and pathway re-localization, and improving precursor supply either through attenuation of the Crabtree effect or through the use of controlled fed-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l-1 with a yield of 67 mg (g glucose)-1 in shake-flask cultures and a titre of 5.1 g l-1 in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy