SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Mingzhen) "

Sökning: WFRF:(Liu Mingzhen)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jia, Xue, et al. (författare)
  • CsPb(IxBr1-x)(3) solar cells
  • 2019
  • Ingår i: Science Bulletin. - : ELSEVIER. - 2095-9273. ; 64:20, s. 1532-1539
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell (PSC) becomes a promising candidate for next-generation high-efficiency solar cells. The power conversion efficiency (PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)(3) and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)(3) solar cells and outline possible directions to further improve the device performance. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
  •  
2.
  • Zhang, Xinyu, et al. (författare)
  • Pressure-induced zigzag phosphorus chain and superconductivity in boron monophosphide
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the prediction of the zinc-blende structure BP into a novel C2/m phase from 113 to 208 GPa which possesses zigzag phosphorus chain structure, followed by another P4(2)/mnm structure above 208 GPa above using the particle-swarm search method. Strong electron-phonon coupling lambda in compressed BP is found, in particular for C2/m phase with the zigzag phosphorus chain, which has the highest lambda (0.56-0.61) value among them, leading to its high superconducting critical temperature T-c (9.4 K-11.5 K), which is comparable with the 4.5 Kto 13 Kvalue of black phosphorus phase I (orthorhombic, Cmca). This is the first system in the boron phosphides which shows superconductivity from the present theoretical calculations. Our results show that pressure-induced zigzag phosphorus chain in BP exhibit higher superconducting temperature T-C, opening a new route to search and design new superconductor materials with zigzag phosphorus chains.
  •  
3.
  • Zhao, Haifeng, et al. (författare)
  • Efficient and High-Luminance Perovskite Light-Emitting Diodes Based on CsPbBr3 Nanocrystals Synthesized from a Dual-Purpose Organic Lead Source
  • 2020
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Rational engineering of the surface properties of perovskite nanocrystals (PeNCs) is critical to obtain light emitters with simultaneous high photoluminescence efficiency and excellent charge transport properties for light-emitting diodes (LEDs). However, the commonly used lead halide sources make it hard to rationally optimize the surface compositions of the PeNCs. In addition, previously developed ligand engineering strategies for conventional inorganic nanocrystals easily deteriorate surface properties of the PeNCs, bringing additional difficulties in optimizing their optoelectronic properties. In this work, a novel strategy of employing a dual-purpose organic lead source for the synthesis of highly luminescent PeNCs with enhanced charge transport property is developed. Lead naphthenate (Pb(NA)(2)), of which the metal ions work as lead sources while the naphthenate can function as the surface ligands afterward, is explored and the obtained products under different synthesis conditions are comprehensively investigated. Monodispersed cesium lead bromide (CsPbBr3) with controllable size and excellent optical properties, showing superior photoluminescence quantum yields up to 80%, is obtained. Based on the simultaneously enhanced electrical properties of the Pb(NA)(2)-derived PeNCs, the resultant LEDs demonstrate a high peak external quantum efficiency of 8.44% and a superior maximum luminance of 31 759 cd cm(-2).
  •  
4.
  • Li, Man, et al. (författare)
  • Advances in Tin(II)-Based Perovskite Solar Cells : From Material Physics to Device Performance
  • 2022
  • Ingår i: Small Structures. - : Wiley. - 2688-4062. ; 3:1
  • Forskningsöversikt (refereegranskat)abstract
    • During the past decade, metal halide perovskites are widely studied in the field of optoelectronic materials due to their unique optical and electrical properties. Lead-based halide perovskite solar cells (PSCs), in particular, currently achieve a record efficiency of 25.5%, thus showing strong potential in industrial application. However, toxicity of lead-based perovskite materials possesses great concerns to natural environment and human body. Therefore, the quest for nontoxic and eco-friendly elements to replace lead in perovskites is of great interest. Among all the element choices, tin(II) (Sn2+) is the most promising candidate. As a rising star of lead-free PSCs, Sn-based PSCs have drawn much attention and made promising progress during the past few years. While the rapid oxidation and decomposition of Sn-based perovskites result in poor stability and low efficiency of PSCs. In this review, structural, optoelectronic properties and the critical issues of Sn-based perovskite materials are analyzed. Then, a detailed discussion on the recent methods in solving critical issues of Sn-based perovskite devices, from optimization on materials physics to device performance, is also presented. Finally, remaining challenges and future perspective are given to advance the progression of Sn-based PSCs.
  •  
5.
  • Zhao, Haifeng, et al. (författare)
  • High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr(3) Nanocrystals with Rationally Designed Aromatic Ligands
  • 2021
  • Ingår i: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 6:7, s. 2395-2403
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite rapid developments of light-emitting diodes (LEDs) based on emerging perovskite nanocrystals (PeNCs), it remains challenging to achieve devices with integrated high efficiencies and high brightness because of the insulating long-chain ligands used for the PeNCs. Herein, we develop highly luminescent and stable formamidinium lead bromide PeNCs capped with rationally designed short aromatic ligands of 2-naphthalenesulfonic acid (NSA) for LEDs. Compared with commonly used oleic acid ligands, the NSA molecules not only preserve the surface properties of the PeNCs during the purification but also notably improve the electrical properties of the assembled emissive layers, ensuring efficient charge injection/transport in the devices. The resulting champion LED with electroluminescence approaching the Rec. 2020 green primary color demonstrates a high brightness of 67 115 cd cm(-2) and a peak external quantum efficiency of 19.2%. More impressively, the device shows negligibly decreased efficiency at an elevated brightness of 20 000 cd cm(-2) and a well-retained efficiency of over 10% at around 65 000 cd cm(-2), presenting a breakthrough in LEDs based on PeNCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy