SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Xinlei) "

Sökning: WFRF:(Liu Xinlei)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Liu, Haifeng, et al. (författare)
  • Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 188, s. 129-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of oxygenated fuels on soot reduction strongly depend on the base fuel. Interesting candidates from oxygenated fuels in this respect include both n-butanol and 2,5-dimethylfuran (DMF), because they have already been used in diesel engines recently. However, information is rather limited on n-butanol and DMF added into a diesel fuel surrogate in fundamental flames to investigate the mechanism of soot reduction. In the current work, both n-butanol and DMF was successively added into diesel surrogate (80% n-heptane and 20% toluene in volume, named as T20) in co-flow partially premixed flames. The effects of different oxygenated structures on polycyclic aromatic hydrocarbons (PAHs) and soot were investigated at the same oxygen weight fractions of 4% and the same volume fractions of 20%. The diagnostics on PAHs, soot volume fractions and soot sizes were conducted by using both laser-induced fluorescence (LIF) and two-color laser-induced incandescence (2C-LII). A combined detailed kinetic model (n-heptane/toluene/butanols/DMF/PAHs) has been obtained in order to clarify the chemical effects of the different oxygenated fuels on PAHs formation. Results show that the reduced toluene content due to the addition of oxygenated fuels is the dominant factor for the reduction of soot, as compared with the base fuel of T20. The oxygenated structure of n-butanol has a higher ability to reduce PAHs and soot as compared with the addition of DMF. This is due to the fact that the consumption of DMF leads to much formation of C5H5 which enhances the formation of PAHs and subsequent soot. However, the formation of PAHs can be inhibited remarkably as blending n-butanol because only small hydrocarbons like C2H2 and C3H3 etc. are formed. The formation rate of A4 is more similar to that of soot in comparison with the smaller ring aromatics. For the size of soot particles, the distribution range is shrunk from 19–70 nm for T20 to 20–40 nm for the addition of oxygenated fuels. As compared to the effects of oxygenated structures, DMF20 presents a little wider distribution on soot sizes than that of B16.8. Some larger soot particles are detected in DMF20 flame but cannot be found in B20 flame.
  •  
3.
  • Aljabri, Hammam, et al. (författare)
  • Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine
  • 2021
  • Ingår i: SAE Technical Papers. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International. - 0148-7191 .- 2688-3627.
  • Konferensbidrag (refereegranskat)abstract
    • The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained. Upon validation, the optimized models have been used to conduct a comparative study between the conventional diesel combustion (CDC) and the isobaric combustion cases with different pressure levels, in terms of engine performance and emissions. Compared to the CDC case, the isobaric combustion cases led to a lower NOx emission but higher sooting tendency due to the increased diffusion combustion feature, although most of the soot was oxidized in the later engine cycle. To further reduce soot emission, the effects of various rail pressures and injector holes number were evaluated. The results indicated that the higher injection pressure was more effective in soot reduction for the isobaric combustion case but it deteriorated the thermal efficiency. It was also found that increasing the number of injector holes from the reference six to ten led to the lowest soot emission without significantly affecting the efficiency.
  •  
4.
  • Liu, Changxin, et al. (författare)
  • Rate analysis of dual averaging for nonconvex distributed optimization
  • 2023
  • Ingår i: IFAC-PapersOnLine. - : Elsevier BV. ; , s. 5209-5214
  • Konferensbidrag (refereegranskat)abstract
    • This work studies nonconvex distributed constrained optimization over stochastic communication networks. We revisit the distributed dual averaging algorithm, which is known to converge for convex problems. We start from the centralized case, for which the change of two consecutive updates is taken as the suboptimality measure. We validate the use of such a measure by showing that it is closely related to stationarity. This equips us with a handle to study the convergence of dual averaging in nonconvex optimization. We prove that the squared norm of this suboptimality measure converges at rate O(1/t). Then, for the distributed setup we show convergence to the stationary point at rate O(1/t). Finally, a numerical example is given to illustrate our theoretical results.
  •  
5.
  • Silva, Mickael, et al. (författare)
  • Computational assessment of effects of throat diameter on combustion and turbulence characteristics in a pre-chamber engine
  • 2022
  • Ingår i: Applied Thermal Engineering. - : Elsevier BV. - 1359-4311. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Towards fundamental investigation of key physical aspects of pre-chamber combustion, the current work utilizes computational fluid dynamics to comprehend the effect of the throat diameter in an engine operated with methane. Previous studies showed that this parameter is dominant in pressure build-up and flow pattern inside the pre-chamber, suggesting that a detailed characterization is necessary. This pre-chamber type is composed of an upper conical part that lodges the spark plug and fuel injector, followed by a straight and tubular region called throat, which tip accommodates the nozzles responsible for the charge exchange between pre and main chambers. Two types of pre-chamber having distinct throat diameters are investigated, while utilizing consistent experimental data for validation of the model. The combustion process is modeled with the G-Equation model; the laminar flame speed was tabulated from a methane oxidation mechanism reduced from the GRI 3.0; the turbulent flame speed was computed using Peters' relation. The simulations were run for a full cycle, starting at exhaust valve opening. A homogeneous charge of methane is considered at the intake port, maintaining a global λ = 1.8, while 3% of total energy fuel is added through the pre-chamber. The results show that the throat changes the flow field inside the pre-chamber, impacts the air-fuel ratio, stratification, turbulence, jet dynamics, and ultimately the pre and main chambers combustion processes and heat fluxes. The combustion regime according to the Borghi-Peters diagram were found to lay in the thin reaction zone and in the flamelet regime.
  •  
6.
  • Yi, Xinlei, et al. (författare)
  • Distributed Dynamic Event-Triggered Control for Multi-Agent Systems
  • 2017
  • Ingår i: 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017. - : IEEE. - 9781509028733 ; , s. 6683-6688
  • Konferensbidrag (refereegranskat)abstract
    • We propose two distributed dynamic triggering laws to solve the consensus problem for multi-agent systems with event-triggered control. Compared with existing triggering laws, the proposed triggering laws involve internal dynamic variables which play an essential role to guarantee that the triggering time sequence does not exhibit Zeno behavior. Some existing triggering laws are special cases of our dynamic triggering laws. Under the condition that the underlying graph is undirected and connected, it is proven that the proposed dynamic triggering laws together with the event-triggered control make the state of each agent converges exponentially to the average of the agents’ initial states. Numerical simulations illustrate the effectiveness of the theoretical results and show that the dynamic triggering laws lead to reduction of actuation updates and inter-agent communications.
  •  
7.
  • Yi, Xinlei, et al. (författare)
  • Dynamic Event-Triggered and Self-Triggered Control for Multi-agent Systems
  • 2019
  • Ingår i: IEEE Transactions on Automatic Control. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0018-9286 .- 1558-2523. ; 64:8, s. 3300-3307
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose two novel dynamic event-triggered control laws to solve the average consensus problem for first-order continuous-time multiagent systems over undirected graphs. Compared with the most existing triggering laws, the proposed laws involve internal dynamic variables, which play an essential role in guaranteeing that the triggering time sequence does not exhibit Zeno behavior. Moreover, some existing triggering laws are special cases of ours. For the proposed self-triggered algorithm, continuous agent listening is avoided as each agent predicts its next triggering time and broadcasts it to its neighbors at the current triggering time. Thus, each agent only needs to sense and broadcast at its triggering times, and to listen to and receive incoming information from its neighbors at their triggering times. It is proved that the proposed triggering laws make the state of each agent converge exponentially to the average of the agents' initial states if and only if the underlying graph is connected. Numerical simulations are provided to illustrate the effectiveness of the theoretical results.
  •  
8.
  • Yi, Xinlei, et al. (författare)
  • Dynamic Triggering Laws and Predictive Self-Triggered Algorithm for Multi-Agent Systems with Event-triggered Control
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We propose two distributed dynamic triggering laws and one predictive self-triggered algorithm to solve the consensus problem for multi-agent systems with event-triggered control. Compared with existing triggering laws, the proposed triggering laws involve internal dynamic variables which play an essential role to guarantee that the triggering time sequence does not exhibit Zeno behavior. Some existing triggering laws are special cases of our dynamic triggering laws. Unlike the great majority of existing works that propose distributed triggering laws and self-triggered algorithm, continuous listening is avoided in the proposed predictive self-triggered algorithm.Under the condition that the underlying graph is undirected and connected, it is proven that the proposed dynamic triggering laws and the predictive self-triggered algorithm together with the event-triggered control make the state of each agent converges exponentially to the average of the agents’ initial states. Numerical simulations illustrate the effectiveness of the theoretical results and show that the dynamic triggering laws and the predictive self-triggered algorithm lead to reduction of actuation updates and inter-agent communications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy