SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yongwen) "

Sökning: WFRF:(Liu Yongwen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhao, Yang, et al. (författare)
  • 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media
  • 2019
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 59, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Although significant progresses have been achieved recently in developing catalysts for electrochemical oxygen evolution in alkaline electrolytes, high performance catalysts toward oxygen evolution in acidic media have not been realized in spite of the technical importance for the development of promising energy transformation technologies including electrocatalytic water splitting, integrated (photo)electrochemistry cells, rechargeable metal-air batteries, and so on. Here, we synthesized a three-dimensional nanoporous Ir70Ni30-xCox alloy microwires as oxygen evolution reaction electrocatalyst using a dealloying strategy. The three dimensional binder-free np-Ir70Ni15Co15 catalyst in 0.1 M HClO4 shows a low overpotential (220 mV@ eta = 10 mA cm(-2)), low Tafel slope (44.1 mV dec(-1)) and excellent corrosion resistance, significantly outperforming commercial IrO2 catalysts. The excellent performance is attributed to the nanoporous structure and the alloying effect, which promote the permeation of electrolyte, accelerate the transportation of electrons. More importantly, the high valence Ir oxide species with low-coordination structure in np-Ir70Ni15Co15 alloy are identified for the real catalytic sites of OER process by the XAS results acquired on synchrotron radiation. This work not only provides fundamental understandings of the correlation between surface activity and stability for OER catalysts, but also paves a new way to advanced electrocatalysts working in acidic media.
  •  
2.
  • Jiang, Kang, et al. (författare)
  • Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Designing efficient electrocatalysts for hydrogen evolution reaction is significant for renewable and sustainable energy conversion. Here, we report single-atom platinum decorated nanoporous Co0.85Se (Pt/np-Co0.85Se) as efficient electrocatalysts for hydrogen evolution. The achieved Pt/np-Co0.85Se shows high catalytic performance with a near-zero onset overpotential, a low Tafel slope of 35 mV dec(-1), and a high turnover frequency of 3.93 s(-1) at -100 mV in neutral media, outperforming commercial Pt/C catalyst and other reported transition-metal-based compounds. Operando X-ray absorption spectroscopy studies combined with density functional theory calculations indicate that single-atom platinum in Pt/np-Co0.85Se not only can optimize surface states of Co0.85Se active centers under realistic working conditions, but also can significantly reduce energy barriers of water dissociation and improve adsorption/desorption behavior of hydrogen, which synergistically promote thermodynamics and kinetics. This work opens up further opportunities for local electronic structures tuning of electrocatalysts to effectively manipulate its catalytic properties by an atomic-level engineering strategy.
  •  
3.
  • Peng, Shushi, et al. (författare)
  • Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models
  • 2015
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 29:1, s. 46-64
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (X-CO2) measurements from the Total Carbon Column Observing Network (TCCON). For comparison with atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE. Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with TCCON data also shows that the seasonal amplitude of X-CO2 is underestimated by more than 10% for seven out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained amplitude of NEE over the Northern Hemisphere is of 1.60.4 gC m(-2)d(-1), which translates into a net CO2 uptake during the carbon uptake period in the Northern Hemisphere of 7.92.0 PgC yr(-1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy