SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yueqiang) "

Sökning: WFRF:(Liu Yueqiang)

  • Resultat 1-50 av 126
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • He, Y., et al. (författare)
  • Combined effects of trapped energetic ions and resistive layer damping on the stability of the resistive wall mode
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilization is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.
  •  
4.
  •  
5.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Chu, M.S., et al. (författare)
  • Response of a resistive and rotating tokamak to external magnetic perturbations below the Alfven frequency
  • 2011
  • Ingår i: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 51, s. 073036-
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivated by the recent experimental observation that plasma stability can be improved by external magnetic perturbations, the general problem of plasma response to external magnetic perturbations is investigated. Different (vacuum, ideal and resistive) plasma response models are considered and compared. Plasma response, in experiments where stabilization was achieved, is obtained through computation using the MARS-F code, with a plasma model that includes both plasma resistivity and rotation. The resultant magnetic field line stochasticity is much reduced from that obtained formerly using the vacuum plasma model. This reduced stochasticity is more consistent with the favourable experimental observation of enhanced stability. Examples are given for the response of an ITER plasma to perturbations generated by the correction coils; and the response of a plasma to external coils (antenna) up to the Alfvén frequency.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Li, L., et al. (författare)
  • Screening of external magnetic perturbation fields due to sheared plasma flow
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the single fluid resistive magnetohydrodynamic model, systematic toroidal modelling efforts are devoted to investigate the plasma response induced screening of the applied external 3D magnetic field perturbations in the presence of sheared toroidal flow. One particular issue of interest is addressed, when the local flow speed approaches zero at the perturbation rational surface inside the plasma. Subtle screening physics, associated with the favourable averaged toroidal curvature effect (the GGJ effect (Glasser et al 1975 Phys. Fluids 7 875)), is found to play an essential role during slow flow near the rational surface by enhancing the screening at reduced flow. A strong cancellation effect between different terms of Ohm's law is discovered, leading to different screening physics in the GGJ regime, as compared to that of conventional screening of the typical resistive-inertial regime occurring at faster flow. These modelling results may be applicable to interpret certain mode locking experiments, as well as type-I edge localized mode suppression experiments, with resonant magnetic field perturbations being applied to tokamak plasmas at low input toroidal torque.
  •  
18.
  •  
19.
  •  
20.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Yang, Xu, et al. (författare)
  • Modelling of plasma response to 3D external magnetic field perturbations in EAST
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:11, s. 114006-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustained mitigation and/or suppression of type-I edge localized modes (ELMs) has been achieved in EAST high-confinement plasmas, utilizing the resonant magnetic perturbation (RMP) fields produced by two rows of magnetic coils located just inside the vacuum vessel. Systematic toroidal modelling of the plasma response to these RMP fields with various coil configurations (with dominant toroidal mode number n = 1, 2, 3, 4) in EAST is, for the first time, carried out by using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), with results reported here. In particular, the plasma response is computed with varying coil phasing (the toroidal phase difference of the coil currents) between the upper and lower rows of coils, from 0 to 360°. Four figures of merit, constructed based on the MARS-F computations, are used to determine the optimal coil phasing. The modelled results, taking into account the plasma response, agree well with the experimental observations in terms of the coil phasing for both the mitigated and the suppressed ELM cases in EAST experiments. This study provides a crucial confirmation of the role of the plasma edge peeling response in ELM control, complementing similar studies carried out for other tokamak devices.
  •  
27.
  • Zhou, Lina, et al. (författare)
  • Plasma response based RMP coil geometry optimization for an ITER plasma
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:11, s. 115003-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on an ITER 15MA Q = 10 inductive scenario, a systematic numerical investigation is carried out in order to understand the effect of varying the geometry of the magnetic coils, used for controlling the edge localized modes in tokamaks, on the plasma response to the resonant magnetic perturbation (RMP) fields produced by these coils. Toroidal computations show that both of the plasma response based figures of merit - one is the pitch resonant radial field component near the plasma edge and the other is the plasma displacement near the X-point of the separatrix - consistently yield the same prediction for the optimal coil geometry. With a couple of exceptions, the presently designed poloidal location of the ITER upper and lower rows of RMP coils is close to the optimum, according to the plasma response based criteria. This holds for different coil current configurations with n = 2, 3, 4, as well as different coil phasing between the upper and lower rows. The coils poloidal width from the present design, on the other hand, is sub-optimal for the upper and lower rows. Modelling also finds that the plasma response amplitude sharply decreases by moving the middle row RMP coils of ITER from the designed radial location (just inside the inner vacuum vessel) outwards (outside the outer vacuum vessel). The decay rate is sensitively affected by the middle row coils' poloidal coverage for low-n (n = 1, 2) RMP fields, but not for high-n (n = 4) fields.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Atalaya, Juan, 1981, et al. (författare)
  • Design and optimization of coreless components using admittance matrix and efficiently calculated sensitivities
  • 2007
  • Ingår i: IEEE Transactions on Magnetics. ; 43, s. 1621-1624
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a novel technique for designing coreless components (inductors and transformers) based on the admittance matrix at quasi-static approximation. In addition, an optimization method based on continuum sensitivity is applied. Efficiency of the design method is shown for inductors that have axisymmetry and carry azimuthal currents. In order to avoid coupling between closely located inductors, a shielding structure is proposed and shape-optimized to confine the magnetic energy.
  •  
33.
  •  
34.
  • Baruzzo, M., et al. (författare)
  • 3D effects on RWM physics in RFX-mod
  • 2011
  • Ingår i: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 51, s. 083037-
  • Tidskriftsartikel (refereegranskat)abstract
    • n this paper insights into the behaviour of resistive wall modes (RWMs) in the RFX-mod reversed field pinch device are given, with a focus on 3D issues in the characterization of the m spectrum of the mode and on the study of multi-harmonic coupling.In the first part of the paper the interaction between multiple unstable RWMs is studied and the presence of a coupling between different poloidal components of the most unstable RWM is demonstrated, taking advantage of the flexibility of the RFX-mod control system.In the second part of the work, the dependence of the growth rates of RWMs on a complete set of plasma parameters is studied in order to create a complete and homogeneous database, which permits a careful validation of stability codes.Finally, the experimental data are compared with the code predictions which take into account the 3D structure of conductors around the plasma. The different effects that modify the simple description, where unstable modes can be identified with single Fourier harmonics, appear to be explained by a mixture of toroidicity-induced and 3D eddy current effects.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  • Buttery, R. J., et al. (författare)
  • The Impact of 3-D Fields on Tearing Mode Stability of H-modes
  • 2011
  • Ingår i: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 51, s. 073016-
  • Tidskriftsartikel (refereegranskat)abstract
    • New processes have been discovered in the interaction of 3D fields with tearing mode stability at low torque and modest β on DIII-D and NSTX. These are thought to arise from the plasma response at the tearing resonant surface, which theoretically is expected to depend strongly on plasma rotation and underlying intrinsic tearing stability. This leads to sensitivities additional to those previously identified at low density where the plasma rotation is more readily stopped, or at high βN where ideal MHD responses amplify the fields (where βN is the plasma β divided by the ratio of plasma current to minor radius multiplied by toroidal field). It is found that the threshold size for 3D fields to induce modes tends to zero as the natural tearing βN limit is approached. 3D field sensitivity is further enhanced at low rotation, with magnetic probing detecting an increased response to applied fields in such regimes. Modelling with the MARS-F code confirms the interpretation with the usual plasma screening response breaking down in low rotation plasmas and a tearing response developing, opening the door to additional sensitivities to β and the current profile. Typical field thresholds to induce modes in torque-free βN ~ 1.5 H-modes are well below those in ohmic plasmas or plasmas near the ideal βN limit. The strong interaction with the tearing mode βN limit is identified through rotation shear, which is decreased by the 3D field, leading to decreased tearing stability. Thus both locked and rotating mode field thresholds can be considered in terms of a torque balance, with sufficient braking leading to destabilization of a mode. On this basis new measurements of the principal parameter scalings for error field threshold have been obtained in torque-free H-modes leading to new predictions for error field sensitivity in ITER. The scalings have similar exponents to ohmic plasmas, but with seven times lower threshold at the ITER baseline βN value of 1.8, and a linear dependence on proximity to the tearing mode βN limit (~2.2 at zero torque). This reinforces the need to optimize error field correction strategies in ITER, and implement sources to drive plasma rotation.
  •  
42.
  • Chapman, I.T., et al. (författare)
  • Macroscopic Stability of High b MAST Plasmas
  • 2011
  • Ingår i: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 51, s. 073040-
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-beta capability of the spherical tokamak, coupled with a suite of world-leading diagnostics on MAST, has facilitated significant improvements in the understanding of performance-limiting core instabilities in high performance plasmas. For instance, the newly installed motional Stark effect diagnostic, with radial resolution
  •  
43.
  • Chapman, I.T., et al. (författare)
  • The Effect of Energetic Particles on Resistive Wall Mode Stability in MAST
  • 2011
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 53, s. 065022-
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistive wall mode (RWM) stability limits have been probed by MHD spectroscopy and numerical modelling. MAST plasmas have operated up to βN = 5.7, well above the predicted ideal kink no-wall limit or measured resonant field amplification limits due to a combination of rotation and kinetic damping. By varying the density, both the rotation and the fast ion distribution function have been changed dramatically. Detailed drift-kinetic modelling shows that whilst the contribution of energetic beam ions to RWM damping does increase at sufficiently high plasma rotation as to allow resonance with the fast ion precession frequency, the thermal ion damping always dominates over the fast ion contribution.
  •  
44.
  • Christie, Michael, 1946, et al. (författare)
  • Some issues in online assessment
  • 2005
  • Ingår i: IPSI Conference, Pescara, Italy 27-31 July 2005.
  • Konferensbidrag (refereegranskat)
  •  
45.
  • Chu, M.S., et al. (författare)
  • Physics of Plasmas Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks
  • 2004
  • Ingår i: Physics of Plasmas. ; 11, s. 2497-
  • Tidskriftsartikel (refereegranskat)abstract
    • Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode ~RWM!. Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics ~MHDs! and utilizing a normal mode approach ~NMA! @M. S. Chu et al., Nucl. Fusion 43, 441 ~2003!#. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F @Y. Q. Liu et al., Phys. Plasmas 7, 3681 ~2000!# has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor ~ITER! @R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 ~2002!# ~scenario IV for advanced tokamak operation! may be feedback stabilized with babove the no wall limit and up to an increment of ;50% towards the ideal limit. Rotation further improves the stability.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Graves, J. P., et al. (författare)
  • Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall
  • 2015
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 57:1, s. 014033-
  • Tidskriftsartikel (refereegranskat)abstract
    • New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.
  •  
50.
  • Gregoratto, D., et al. (författare)
  • Optimisation of Resistive Wall Mode Control in Reversed Field Pinches
  • 2004
  • Ingår i: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 44, s. 1-
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedback stabilization of magnetohydrodynamic modes in reversed field pinches is analysed for a set of discrete coils driven by voltage control. It is found that the resistive wall mode can be stabilized with a very simple controller structure and with acceptable voltages in the coils. These results are obtained by using a sufficient number of active coils and either sensors for the radial field or sensors for the poloidal or toroidal field placed inside the resistive wall. The result is robust with respect to variations in the plasma equilibrium. Poloidal and toroidal sensors placed outside the wall require a more complicated controller and very high voltages, and do not allow as good control performance as internal sensors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 126

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy