SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Locht C) "

Sökning: WFRF:(Locht C)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Winter, J M, et al. (författare)
  • KBTBD13 is an actin-binding protein that modulates muscle kinetics
  • 2020
  • Ingår i: Journal of Clinical Investigation. - : Stanford University Press. - 0021-9738 .- 1558-8238. ; 130:2, s. 754-767
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13(R408c)-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Locht, Inka L. M., et al. (författare)
  • Standard model of the rare earths analyzed from the Hubbard I approximation
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - : American Physical Society. - 2469-9950. ; 94:8
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we examine critically the electronic structure of the rare-earth elements by use of the so-called Hubbard I approximation. From the theoretical side all measured features of both occupied and unoccupied states are reproduced, without significant deviations between observations and theory. We also examine cohesive properties like the equilibrium volume and bulk modulus, where we find, in general, a good agreement between theory andmeasurements. In addition, we have reproduced the spin and orbital moments of these elements as they are reflected from measurements of the saturation moment. We have also employed the Hubbard I approximation to extract the interatomic exchange parameters of an effective spin Hamiltonian for the heavy rare earths. We show that the Hubbard I approximation gives results which are consistent with calculations where 4f electrons are treated as core states for Gd. The latter approach was also used to address the series of the heavy/late rare earths. Via Monte Carlo simulations we obtained ordering temperatures which reproduce measurements within about 20%. We have further illustrated the accuracy of these exchange parameters by comparing measured and calculated magnetic configurations for the heavy rare earths and the magnon dispersion for Gd. The Hubbard I approximation is compared to other theories of the electronic structure, and we argue that it is superior. We discuss the relevance of our results in general and how this makes it possible to treat the electronic structure of materials containing rare-earth elements, such as permanent magnets, magnetostrictive compounds, photovoltaics, optical fibers, topological insulators, and molecular magnets.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Östlin, Andreas, et al. (författare)
  • Stacking fault energetics of alpha- and gamma-cerium investigated with ab initio calculations
  • 2016
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950. ; 93:9
  • Tidskriftsartikel (refereegranskat)abstract
    • At ambient pressure the element cerium shows a metastable (t(1/2) similar to 40 years) double-hexagonal close-packed beta phase that is positioned between two cubic phases, gamma and alpha. With modest pressure the beta phase can be suppressed, and a volume contraction (17%) occurs between the gamma and the alpha phases as the temperature is varied. This phenomenon has been linked to subtle alterations in the 4f band. In order to rationalize the presence of the metastable beta phase, and its position in the phase diagram, we have computed the stacking fault formation energies of the cubic phases of cerium using an axial interaction model. This model links the total energy differences between hexagonal closed-packed stacking sequences and stacking fault energetics. Total energies are calculated by density functional theory and by dynamical mean-field theory merged with density functional theory. It is found that there is a large difference in the stacking fault energies between the alpha and the gamma phase. The beta-phase energy is nearly degenerate with the gamma phase, consistent with previous third-law calorimetry results, and dislocation dynamics explain the pressure and temperature hysteretic effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy