SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lohkamp B) "

Sökning: WFRF:(Lohkamp B)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Agirre, Jon, et al. (författare)
  • The CCP4 suite: integrative software for macromolecular crystallography
  • 2023
  • Ingår i: Acta Crystallographica Section D. - : INT UNION CRYSTALLOGRAPHY. - 2059-7983. ; 79, s. 449-461
  • Tidskriftsartikel (refereegranskat)abstract
    • The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
  •  
3.
  •  
4.
  • van Kuilenburg, A B P, et al. (författare)
  • Identification of two novel mutations C79X and R235Q in the dihydropyrimidine dehydrogenase gene in a patient presenting with hematuria
  • 2008
  • Ingår i: Nucleosides, Nucleotides & Nucleic Acids. - : Informa UK Limited. - 1525-7770 .- 1532-2335. ; 27:6-7, s. 809-815
  • Tidskriftsartikel (refereegranskat)abstract
    • A patient with hematuria was shown to have thymine-uraciluria. The dihydropyrimidine dehydrogenase (DPD) activity in peripheral blood mononuclear cells was 0.16 nmol/mg/h; controls: 9.9 +/- 2.8 nmol/mg/h. Analysis of DPYD showed that the patient was compound heterozygous for the novel mutations 237C > A (C79X) in exon 4 and 704G > A (R235Q) in exon 7. The nonsense mutation (C79X) leads to premature termination of translation and thus to a non-functional protein. Analysis of the crystal structure of pig DPD suggested that the R235Q mutation might interfere with the binding of FAD and the electron flow between the NADPH and the pyrimidine substrate site of DPD.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Emsley, P, et al. (författare)
  • Features and development of Coot
  • 2010
  • Ingår i: Acta crystallographica. Section D, Biological crystallography. - 1399-0047. ; 66:Pt 4, s. 486-501
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  •  
10.
  • Lohkamp, B, et al. (författare)
  • Purification, crystallization and X-ray diffraction analysis of dihydropyrimidinase from Dictyostelium discoideum
  • 2006
  • Ingår i: Acta Crystallographica. Section F: Structural Biology and Crystallization Communications. - : International Union of Crystallography (IUCr). - 2053-230X .- 1744-3091. ; 62:1, s. 36-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidinase (EC 3.5.2.2) is the second enzyme in the reductive pyrimidine-degradation pathway and catalyses the hydrolysis of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N-carbamylated beta-amino acids. The recombinant enzyme from the slime mould Dictyostelium discoideum was overexpressed, purified and crystallized by the vapour-diffusion method. One crystal diffracted to better than 1.8 angstrom resolution on a synchrotron source and was shown to belong to space group I222, with unit-cell parameters a = 84.6, b = 89.6, c = 134.9 angstrom and one molecule in the asymmetric unit.
  •  
11.
  • Lohkamp, B, et al. (författare)
  • The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 1083-351X .- 0021-9258. ; 281:19, s. 13762-13776
  • Tidskriftsartikel (refereegranskat)abstract
    • In eukaryotes, dihydropyrimidinase catalyzes the second step of the reductive pyrimidine degradation, the reversible hydrolytic ring opening of dihydropyrimidines. Here we describe the three- dimensional structures of dihydropyrimidinase from two eukaryotes, the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum, determined and refined to 2.4 and 2.05 angstrom, respectively. Both enzymes have a ( beta/ alpha)(8)- barrel structural core embedding the catalytic di- zinc center, which is accompanied by a smaller beta- sandwich domain. Despite loop- forming insertions in the sequence of the yeast enzyme, the overall structures and architectures of the active sites of the dihydropyrimidinases are strikingly similar to each other, as well as to those of hydantoinases, dihydroorotases, and other members of the amidohydrolase superfamily of enzymes. However, formation of the physiologically relevant tetramer shows subtle but nonetheless significant differences. The extension of one of the sheets of the beta- sandwich domain across a subunit- subunit interface in yeast dihydropyrimidinase underlines its closer evolutionary relationship to hydantoinases, whereas the slime mold enzyme shows higher similarity to the noncatalytic collapsin- response mediator proteins involved in neuron development. Catalysis is expected to follow a dihydroorotase- like mechanism but in the opposite direction and with a different substrate. Complexes with dihydrouracil and N- carbamyl- beta- alanine obtained for the yeast dihydropyrimidinase reveal the mode of substrate and product binding and allow conclusions about what determines substrate specificity, stereoselectivity, and the reaction direction among cyclic amidohydrolases.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • van Kuilenburg, André B P, et al. (författare)
  • Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency
  • 2007
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier BV. - 1096-7192 .- 1096-7206. ; 91:2, s. 157-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and it catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine to N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid, respectively. To date, only nine individuals have been reported suffering from a complete DHP deficiency. We report two siblings presenting with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. One of the siblings had a severe delay in speech development and white matter abnormalities, whereas the other one was free of symptoms. Analysis of the DHP gene (DPYS) showed that both patients were compound heterozygous for the missense mutation 1078T>C (W360R) in exon 6 and a novel missense mutation 1235G>T (R412M) in exon 7. Heterologous expression of the mutant enzymes in Escherichia coli showed that both missense mutations resulted in a mutant DHP enzyme without residual activity. Analysis of the crystal structure of eukaryotic DHP from the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum suggests that the W360R and R412M mutations lead to structural instability of the enzyme which could potentially impair the assembly of the tetramer.
  •  
17.
  • van Kuilenburg, André B P, et al. (författare)
  • ß-ureidopropionase deficiency : phenotype, genotype and protein structural consequences in 16 patients
  • 2012
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434. ; 1822:7, s. 1096-108
  • Tidskriftsartikel (refereegranskat)abstract
    • ß-ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyzes the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO(2). To date, only five genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 11 newly identified ß-ureidopropionase deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological abnormalities (intellectual disabilities, seizures, abnormal tonus regulation, microcephaly, and malformations on neuro-imaging) and markedly elevated levels of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid in urine and plasma. Analysis of UPB1, encoding ß-ureidopropionase, showed 6 novel missense mutations and one novel splice-site mutation. Heterologous expression of the 6 mutant enzymes in Escherichia coli showed that all mutations yielded mutant ß-ureidopropionase proteins with significantly decreased activity. Analysis of a homology model of human ß-ureidopropionase generated using the crystal structure of the enzyme from Drosophila melanogaster indicated that the point mutations p.G235R, p.R236W and p.S264R lead to amino acid exchanges in the active site and therefore affect substrate binding and catalysis. The mutations L13S, R326Q and T359M resulted most likely in folding defects and oligomer assembly impairment. Two mutations were identified in several unrelated ß-ureidopropionase patients, indicating that ß-ureidopropionase deficiency may be more common than anticipated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy