SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lombaert R.) "

Sökning: WFRF:(Lombaert R.)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roelfsema, P. R., et al. (författare)
  • In-orbit performance of Herschel-HIFI
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described.Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources.Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Cernicharo, J., et al. (författare)
  • A high-resolution line survey of IRC+10216 with Herschel/HIFI First results: Detection of warm silicon dicarbide (SiC2)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L8-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901 GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5-636.5 GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC2). We identified 55 SiC2 transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC2 is produced in the inner dust formation zone, with an abundance of similar to 2 x 10(-7) relative to molecular hydrogen. These SiC2 lines have been observed for the first time in space and have been used to derive an SiC2 rotational temperature of similar to 204 K and a source-averaged column density of similar to 6.4 x 10(15) cm(-2). Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC2.
  •  
3.
  • Decin, L., et al. (författare)
  • Warm water vapour in the sooty outflow from a luminous carbon star
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 467:7311, s. 64-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection(1) of circumstellar water vapour around the ageing carbon star IRC + 10216 challenged the current understanding of chemistry in old stars, because water was predicted(2) to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star(1), grain surface reactions(3), and photochemistry in the outer circumstellar envelope(4). With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC + 10216 using the Herschel satellite(5). This includes some high-excitation lines with energies corresponding to similar to 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances(6) are much higher than hitherto predicted(7).
  •  
4.
  • Royer, P., et al. (författare)
  • PACS and SPIRE spectroscopy of the red supergiant VY CMa
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L145-
  • Tidskriftsartikel (refereegranskat)abstract
    • With a luminosity > 10(5) L-circle dot and a mass-loss rate of similar to 2 x 10(-4) M-circle dot yr(-1), the red supergiant VY CMa truly is a spectacular object. Because of its extreme evolutionary state, it could explode as supernova any time. Studying its circumstellar material, into which the supernova blast will run, provides interesting constraints on supernova explosions and on the rich chemistry taking place in such complex circumstellar envelopes. We have obtained spectroscopy of VY CMa over the full wavelength range offered by the PACS and SPIRE instruments of Herschel, i.e. 55-672 micron. The observations show the spectral fingerprints of more than 900 spectral lines, of which more than half belong to water. In total, we have identified 13 different molecules and some of their isotopologues. A first analysis shows that water is abundantly present, with an ortho-to-para ratio as low as similar to 1.3:1, and that chemical non-equilibrium processes determine the abundance fractions in the inner envelope.
  •  
5.
  • De Nutte, R., et al. (författare)
  • Nucleosynthesis in AGB Stars Traced by Oxygen Isotopic Ratios
  • 2015
  • Ingår i: Conference on Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Vienna, 28- July - 1 Aug. 2014: (Astronomical Society of the Pacific Conference Series). - : ASTRONOMICAL SOC PACIFIC. - 9781583818794 ; 497, s. 289-294, s. 289-294
  • Konferensbidrag (refereegranskat)abstract
    • Isotopic ratios are by far the best diagnostic tracers of the stellar origin of elements, as they are very sensitive to the precise conditions in the nuclear burning regions. They allow us to give direct constraints on stellar evolution models and on the progenitor mass. However, up to now different isotopic ratios have been well constrained for only a handful of Asymptotic Giant Branch (AGB) stars. We present new data on isotopologue lines of a well-selected sample of AGB stars, covering the three spectral classes of C-, S- and M-type stars. We report on the first efforts made in determining accurate isotopologue fractions, focusing on oxygen isotopes which are a crucial tracer of the poorly constrained extra mixing processes in stellar atmospheres.
  •  
6.
  • De Nutte, R., et al. (författare)
  • Nucleosynthesis in AGB stars traced by oxygen isotopic ratios I. Determining the stellar initial mass by means of the O-17/O-18 ratio
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We seek to investigate the O-17/O-18 ratio for a sample of AGB stars containing M-, S-, and C-type stars. These ratios are evaluated in relation to fundamental stellar evolution parameters: the stellar initial mass and pulsation period.Methods. Circumstellar (CO)-C-13-O-16, (CO)-C-12-O-17, and (CO)-C-12-O-18 line observations were obtained for a sample of nine stars with various single-dish long-wavelength facilities. Line intensity ratios are shown to relate directly to the surface O-17/O-18 abundance ratio.Results. Stellar evolution models predict the O-17/O-18 ratio to be a sensitive function of initial mass and to remain constant throughout the entire TP-AGB phase for stars initially less massive than 5 M-circle dot. This makes the measured ratio a probe of the initial stellar mass.Conclusions. Observed O-17/O-18 ratios are found to be well in the range predicted by stellar evolution models that do not consider convective overshooting. From this, accurate initial mass estimates are calculated for seven sources. For the remaining two sources, there are two mass solutions, although there is a larger probability that the low-mass solution is correct. Finally, we present hints at a possible separation between M/S- and C-type stars when comparing the O-17/O-18 ratio to the stellar pulsation period.
  •  
7.
  • Decin, L., et al. (författare)
  • Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tauri as seen by Herschel/HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L4-
  • Tidskriftsartikel (refereegranskat)abstract
    • During their asymptotic giant branch evolution, low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of (H2O)-O-16 and the rarer isotopologues (H2O)-O-17 and (H2O)-O-18 in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of 6.6 x 10(-5), and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of (CO)-C-12, (CO)-C-13, (SiO)-Si-28, (SiO)-Si-29, (SiO)-Si-30, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized, and we show that the wind acceleration is slower than hitherto anticipated.
  •  
8.
  • Hrudkova, M., et al. (författare)
  • The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 464:1, s. 1018-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a planetary companion candidate with a minimum mass M sin i = 4.6 +/- 1.0 M-Jupiter orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our programme to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coude echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph High Efficiency and Resolution Mercator Echelle Spectrograph of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 +/- 4.5 d) variation with a semi-amplitude K = 133 +/- 25 ms(-1), superimposed on a long-term trend. A low-mass stellar companion with an orbital period of similar to 88 yr in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry, we find that HD 175370 is most likely a low-mass red giant branch or asymptotic giant branch star.
  •  
9.
  • Khouri, T., et al. (författare)
  • The wind of W Hydrae as seen by Herschel I. The CO envelope
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A5-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essential for understanding AGB evolution, including the rate of mass loss and isotopic ratios. Aims. We characterize the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments on board the Herschel Space Observatory and ground-based telescopes. (CO)-C-12 and (CO)-C-13 lines are used to constrain the intrinsic C-12/C-13 ratio from resolved HIFI lines. Methods. We combined a state-of-the-art molecular line emission code and a dust continuum radiative transfer code to model the CO lines and the thermal dust continuum. Results. The acceleration of the outflow up to about 5.5 km s(-1) is quite slow and can be represented by a beta-type velocity law with index beta = 5. Beyond this point, acceleration up the terminal velocity of 7 km s(-1) is faster. Using the J = 10-9, 9-8, and 6-5 transitions, we find an intrinsic C-12/C-13 ratio of 18 +/- 10 for W Hya, where the error bar is mostly due to uncertainties in the (CO)-C-12 abundance and the stellar flux around 4.6 mu m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at similar to 500 stellar radii. The radial dust emission intensity profile of our stellar wind model matches PACS images at 70 mu m out to 20 '' (or 800 stellar radii). For larger radii the observed emission is substantially stronger than our model predicts, indicating that at these locations there is extra material present. Conclusions. The initial slow acceleration of the wind may imply inefficient dust formation or dust driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M-circle dot or more. However, the uncertainty in the isotopologic ratio is large, which makes it difficult to set reliable limits on W Hya's main-sequence mass.
  •  
10.
  • Khouri, T., et al. (författare)
  • The wind of W Hydrae as seen by Herschel II. The molecular envelope of W Hydrae
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. Art. no. A67-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB stars and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. Aims. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the (CO)-C-12 molecule. Here we broaden this study by including an extensive set of H2O and (SiO)-Si-28 lines. It is the first time such a comprehensive study is performed for this source. The oxygen isotopic ratios and the (SiO)-Si-28 abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. Methods. We model the molecular emission observed by the three instruments on board Herschel Space Observatory using a state-of-the-art molecular excitation and radiative transfer code. We also account for the dust radiation field in our calculations. Results. We find an H2O ortho-to-para ratio of 2.5(-1.0)(+2.5), consistent with what is expected for an AGB wind. The O-16/O-17 ratio indicates that W Hya has an initial mass of about 1.5 M-circle dot. Although the ortho-and para-H2O lines observed by HIFI appear to trace gas of slightly different physical properties, we find that a turbulence velocity of 0.7 +/- 0.1 km s(-1) fits the HIFI lines of both spin isomers and those of (SiO)-Si-28 well. Conclusions. The modelling of H2O and (SiO)-Si-28 confirms the properties of the envelope model of W Hya, as derived from (CO)-C-12 lines, and allows us to constrain the turbulence velocity. The ortho-and para-(H2O)-O-16 and (SiO)-Si-28 abundances relative to H-2 are (6(2)(+3)) x 10(-4), (3(-1)(+2)) x 10(-4), and (3.3 +/- 0.8) x 10(-5), respectively, in agreement with expectations for oxygen-rich AGB outflows. Assuming a solar silicon-to-carbon ratio, the (SiO)-Si-28 line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
  •  
11.
  • Danilovich, Taissa, 1987, et al. (författare)
  • Detailed Modelling of the Circumstellar Envelope of the S-type AGB Star W Aquilae
  • 2015
  • Ingår i: Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Conference on Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Vienna JUL 28-AUG 01, 2014. - : ASTRONOMICAL SOC PACIFIC. - 9781583818794 ; 497, s. 219-220
  • Konferensbidrag (refereegranskat)abstract
    • We present new Herschel(1) HIFI (de Graauw et al. 2010) and PACS (Poglitsch et al. 2010) sub-millimeter and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances.
  •  
12.
  • Danilovich, Taissa, 1987, et al. (författare)
  • Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. Art. no. A76-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results. We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 x 10(-6) M-circle dot yr(-1) based on the (CO)-C-12 lines. The estimated (CO)-C-12/(CO)-C-13 ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 x 10(-5), which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 x 10(-6), and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 x 10(-6), and distribution of CN in W Aql's circumstellar envelope using ground-based data. We find an SiO abundance of 3 x 10(-6), and an NH3 abundance of 1.7 x 10(-5), confined to a small envelope. If we include uncertainties in the adopted circumstellar model - in the adopted abundance distributions, etc. - the errors in the abundances are of the order of factors of a few. The data also suggest that, in terms of HCN, S-type and M-type AGB stars are similar, and in terms of H2O, S-type AGB stars are more like C-type than M-type AGB stars. We detect excess blue-shifted emission in several molecular lines, possibly due to an asymmetric outflow. Conclusions. The estimated abundances of circumstellar HCN, SiO and H2O place W Aql in between M-and C-type AGB stars, i.e., the abundances are consistent with an S-type classification.
  •  
13.
  • de Vries, Bernard L., et al. (författare)
  • Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150 3224 Searching for clues to the mysterious evolution of massive AGB stars
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150 3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. Methods. We use the best-fit model for IRAS 17150 3224 of Meixner et al. (2002, ApJ, 571, 936) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 mu m in radiative transport models to those in ISO-SWS and Herschel/PACS observations. Results. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 mu m feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 mu m up to 6 mu m. We also tested models where the forsterite is located in a torus region or where it is concentrated in the equatorial plane, in a disk-like fashion. These models show either absorption features that are too strong or a 69 mu m band that is too weak, respectively, so we exclude these cases. We observe a blue shoulder on the 69 mu m band that cannot be explained by forsterite and we suggest a possible population of micron-sized ortho-enstatite grains. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150 3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (>= 10(3) M-circle dot/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed that might explain the lower-limit of similar to 2 mu m found for the forsterite grains, but none are satisfactory. Among the mechanisms explored is a possible selection effect due to radiation pressure based on photon scattering on micron-sized grains.
  •  
14.
  • Homan, W., et al. (författare)
  • Analytical Models of Spirals in Stellar Winds to Interpret ALMA Data
  • 2015
  • Ingår i: Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Conference on Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Vienna JUL 28-AUG 01, 2014. - 9781583818794 ; 497, s. 545-551
  • Konferensbidrag (refereegranskat)abstract
    • Observations of stellar winds have shown that these outflows are non homogeneous and might harbor structural complexities on macro- and microscales. Here, we focus on spiral structures with the aim to expand our understanding of the manifestation of such structures in the (one- and three-dimensional) observables of a stellar wind. For this we have developed fully parametrised analytical models. The emission produced by these models is simulated via 3D radiative transfer. We present the results for two different models of an optically thin spiral in an optically thin outflow. The two spiral geometries considered are identical, but for their opening angle, which are respectively low and high. We demonstrate that the low-excitation rotational spectral lines of CO hardly reflect this more complex geometry, but that spatial information, in the form of Position-Velocity diagrams, does carry all the fundamental geometrical information. Finally, we briefly present a comparison with the ALMA data for CW Leo.
  •  
15.
  • Homan, W., et al. (författare)
  • Simplified models of stellar wind anatomy for interpreting high-resolution data Analytical approach to embedded spiral geometries
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Recent high-resolution observations have shown that stellar winds harbour complexities that strongly deviate from spherical symmetry, which generally is assumed as standard wind model. One such morphology is the Archimedean spiral, which is generally believed to be formed by binary interactions, as has been directly observed in multiple sources. Aims. We seek to investigate the manifestation in the observables of spiral structures embedded in the spherical outflows of cool stars. We aim to provide an intuitive bedrock with which upcoming ALMA data can be compared and interpreted. Methods. By means of an extended parameter study, we modelled rotational CO emission from the stellar outflow of asymptotic giant branch stars. To this end, we developed a simplified analytical parametrised description of a 3D spiral structure. This model is embedded into a spherical wind and fed into the 3D radiative transfer code LIME, which produces 3D intensity maps throughout velocity space. Subsequently, we investigated the spectral signature of rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of wide-slit position-velocity (PV) diagrams. Additionally, we quantified the potential for misinterpreting the 3D data in a 1D context. Finally, we simulated ALMA observations to explore the effect of interferometric noise and artefacts on the emission signatures. Results. The spectral signatures of the CO rotational transition v = 0 J = 3-2 are very efficient at concealing the dual nature of the outflow. Only a select few parameter combinations allow for the spectral lines to disclose the presence of the spiral structure. If the spiral cannot be distinguished from the spherical signal, this might result in an incorrect interpretation in a 1D context. Consequently, erroneous mass-loss rates would be calculated. The magnitude of these errors is mainly confined to a factor of a few, but in extreme cases can exceed an order of magnitude. CO transitions of different rotationally excited levels show a characteristical evolution in their line shape that can be brought about by an embedded spiral structure. However, if spatial information on the source is also available, the use of wide-slit PV diagrams systematically expose the embedded spiral. The PV diagrams also readily provide most of the geometrical and physical properties of the spiral-harbouring wind. Simulations of ALMA observations prove that the choice of antenna configuration is strongly dependent on the geometrical properties of the spiral. We conclude that exploratory endeavours should observe the object of interest with a range of different maximum-baseline configurations.
  •  
16.
  • Khouri, T., et al. (författare)
  • Dusty wind of W Hydrae Multi-wavelength modelling of the present-day and recent mass loss
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 577
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low- and intermediate-mass stars go through a period of intense mass-loss at the end of their lives, during the asymptotic giant branch (AGB) phase. While on the AGB a significant part, or even most, of their initial mass is expelled in a stellar wind. This process controls the final stages of the evolution of these stars and contributes to the chemical evolution of galaxies. However, the wind-driving mechanism of AGB stars is not yet well understood, especially so for oxygen-rich sources. Characterizing both the present-day mass-loss rate and wind structure and the evolution of the mass-loss rate of such stars is paramount to advancing our understanding of this processes. Aims. We study the dusty wind of the oxygen-rich AGB star W Hya to understand its composition and structure and shed light on the mass-loss mechanism. Methods. We modelled the dust envelope of W Hya using an advanced radiative transfer code. We analysed our dust model in the light of a previously calculated gas-phase wind model and compared it with measurements available in the literature, such as infrared spectra, infrared images, and optical scattered light fractions. Results. We find that the dust spectrum of W Hya can partly be explained by a gravitationally bound dust shell that probably is responsible for most of the amorphous Al2O3 emission. The composition of the large (similar to 0.3 mu m) grains needed to explain the scattered light cannot be constrained, but probably is dominated by silicates. Silicate emission in the thermal infrared was found to originate from beyond 40 AU from the star. In our model, the silicates need to have substantial near-infrared opacities to be visible at such large distances. The increase in near-infrared opacity of the dust at these distances roughly coincides with a sudden increase in expansion velocity as deduced from the gas-phase CO lines. The dust envelope of W Hya probably contains an important amount of calcium but we were not able to obtain a dust model that reproduces the observed emission while respecting the limit set by the gas mass-loss rate. Finally, the recent mass loss of W Hya is confirmed to be highly variable and we identify a strong peak in the mass-loss rate that occurred about 3500 years ago and lasted for a few hundred years.
  •  
17.
  • Sande, M. Van De, et al. (författare)
  • Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus: Non-LTE abundance analysis of CO, SiO, and HCN
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims. Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods. We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10 -5 and 6.0 × 10 -5 with respect to H 2 . The abundance profile is constant up to 60 ± 10 R, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 10 13 cm or 1.4 ± 0.2 R. For HCN, we find an initial abundance of 5.0 × 10 -7 with respect to H 2 . The Gaussian profile that describes the decline starts at the stellar surface and has an e-folding radius r e of 1.85 ± 0.05 × 10 15 cm or 74 ± 2 R. Conclusions. We cannot unambiguously identify the mechanism by which SiO is destroyed at 60 ± 10 R. The initial abundances found are higher than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-J transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy