SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lombardozzi Danica) "

Sökning: WFRF:(Lombardozzi Danica)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keetz, Lasse T., et al. (författare)
  • Climate–ecosystem modelling made easy : The Land Sites Platform
  • 2023
  • Ingår i: Global Change Biology. - 1354-1013. ; 29:15, s. 4440-4452
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.
  •  
2.
  • Kondo, Masayuki, et al. (författare)
  • Are Land-Use Change Emissions in Southeast Asia Decreasing or Increasing?
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Southeast Asia is a region known for active land-use changes (LUC) over the past 60 years; yet, how trends in net CO2 uptake and release resulting from LUC activities (net LUC flux) have changed through past decades remains uncertain. The level of uncertainty in net LUC flux from process-based models is so high that it cannot be concluded that newer estimates are necessarily more reliable than older ones. Here, we examined net LUC flux estimates of Southeast Asia for the 1980s−2010s from older and newer sets of Dynamic Global Vegetation Model simulations (TRENDY v2 and v7, respectively), and forcing data used for running those simulations, along with two book-keeping estimates (H&N and BLUE). These estimates yielded two contrasting historical LUC transitions, such that TRENDY v2 and H&N showed a transition from increased emissions from the 1980s to 1990s to declining emissions in the 2000s, while TRENDY v7 and BLUE showed the opposite transition. We found that these contrasting transitions originated in the update of LUC forcing data, which reduced the loss of forest area during the 1990s. Further evaluation of remote sensing studies, atmospheric inversions, and the history of forestry and environmental policies in Southeast Asia supported the occurrence of peak emissions in the 1990s and declining thereafter. However, whether LUC emissions continue to decline in Southeast Asia remains uncertain as key processes in recent years, such as conversion of peat forest to oil-palm plantation, are yet to be represented in the forcing data, suggesting a need for further revision.
  •  
3.
  • Lu, Haibo, et al. (författare)
  • Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO2 efflux from soil (soil respiration (SR)) is one of the largest fluxes in the global carbon (C) cycle and its response to climate change could strongly influence future atmospheric CO2 concentrations. Still, a large divergence of global SR estimates and its autotrophic (AR) and heterotrophic (HR) components exists among process based terrestrial ecosystem models. Therefore, alternatively derived global benchmark values are warranted for constraining the various ecosystem model output. In this study, we developed models based on the global soil respiration database (version 5.0), using the random forest (RF) method to generate the global benchmark distribution of total SR and its components. Benchmark values were then compared with the output of ten different global terrestrial ecosystem models. Our observationally derived global mean annual benchmark rates were 85.5 ± 40.4 (SD) Pg C yr-1 for SR, 50.3 ± 25.0 (SD) Pg C yr-1 for HR and 35.2 Pg C yr-1 for AR during 1982-2012, respectively. Evaluating against the observations, the RF models showed better performance in both of SR and HR simulations than all investigated terrestrial ecosystem models. Large divergences in simulating SR and its components were observed among the terrestrial ecosystem models. The estimated global SR and HR by the ecosystem models ranged from 61.4 to 91.7 Pg C yr-1 and 39.8 to 61.7 Pg C yr-1, respectively. The most discrepancy lays in the estimation of AR, the difference (12.0-42.3 Pg C yr-1) of estimates among the ecosystem models was up to 3.5 times. The contribution of AR to SR highly varied among the ecosystem models ranging from 18% to 48%, which differed with the estimate by RF (41%). This study generated global SR and its components (HR and AR) fluxes, which are useful benchmarks to constrain the performance of terrestrial ecosystem models.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy