SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Londi Giacomo) "

Sökning: WFRF:(Londi Giacomo)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gillett, Alexander J., et al. (författare)
  • Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors
  • 2021
  • Ingår i: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering a low singlet-triplet energy gap (Delta E-ST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 x 10(5) cm(-1)) and a relatively large Delta E-ST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 mu s), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a similar to 24 ns timescale and have an average electron-hole separation of >= 1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low Delta E-ST in organic DF emitters.
  •  
2.
  • Gillett, Alexander J., et al. (författare)
  • The role of charge recombination to triplet excitons in organic solar cells
  • 2021
  • Ingår i: Nature. - : NATURE PORTFOLIO. - 0028-0836 .- 1476-4687. ; 597:7878, s. 666-
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%(1). However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%(2). A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps(3), owing to non-radiative recombination(4). For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend(5), this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more. A substantial pathway for energy loss in organic solar cells may be suppressed by engineering hybridization between non-fullerene acceptor triplet excitons and spin-triplet charge transfer excitons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy