SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lorentzen J C) "

Search: WFRF:(Lorentzen J C)

  • Result 1-33 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mishra, A., et al. (author)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  •  
3.
  • Franceschini, N., et al. (author)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
4.
  • Mola-Caminal, M., et al. (author)
  • PATJ Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome A Genome-Wide Meta-Analysis
  • 2019
  • In: Circulation research. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7330 .- 1524-4571. ; 124:1, s. 114-120
  • Journal article (peer-reviewed)abstract
    • Rationale: Ischemic stroke is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. Objective: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest GWAS (genome-wide association study) in ischemic stroke recovery to date. Methods and Results: A 12-cohort, 2-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent ischemic stroke cases. Functional outcome was recorded using 3-month modified Rankin Scale. Analyses were adjusted for confounders such as discharge National Institutes of Health Stroke Scale. A gene-based burden test was performed. The discovery phase (n=1225) was followed by open (n=2482) and stringent joint-analyses (n=1791). Those cohorts with modified Rankin Scale recorded at time points other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in PATJ (Pals1-associated tight junction) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, beta=0.40, P=1.70x10-9). Conclusions: Our results identify a set of common variants in PATJ gene associated with 3-month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci.
  •  
5.
  •  
6.
  •  
7.
  • Sawcer, Stephen, et al. (author)
  • Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 476:7359, s. 214-219
  • Journal article (peer-reviewed)abstract
    • Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.
  •  
8.
  • Wu, O., et al. (author)
  • Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  • 2019
  • In: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 50:7, s. 1734-1741
  • Journal article (peer-reviewed)abstract
    • Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (rho=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm(3) (0.9-16.6 cm(3)). Patients with small artery occlusion stroke subtype had smaller lesion volumes (P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.
  •  
9.
  • Soderholm, M., et al. (author)
  • Genome-wide association meta-analysis of functional outcome after ischemic stroke
  • 2019
  • In: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:12
  • Journal article (peer-reviewed)abstract
    • Objective To discover common genetic variants associated with poststroke outcomes using a genome-wide association (GWA) study. Methods The study comprised 6,165 patients with ischemic stroke from 12 studies in Europe, the United States, and Australia included in the GISCOME (Genetics of Ischaemic Stroke Functional Outcome) network. The primary outcome was modified Rankin Scale score after 60 to 190 days, evaluated as 2 dichotomous variables (0-2 vs 3-6 and 0-1 vs 2-6) and subsequently as an ordinal variable. GWA analyses were performed in each study independently and results were meta-analyzed. Analyses were adjusted for age, sex, stroke severity (baseline NIH Stroke Scale score), and ancestry. The significance level was p < 5 x 10(-8). Results We identified one genetic variant associated with functional outcome with genome-wide significance (modified Rankin Scale scores 0-2 vs 3-6, p = 5.3 x 10(-9)). This intronic variant (rs1842681) in the LOC105372028 gene is a previously reported trans-expression quantitative trait locus for PPP1R21, which encodes a regulatory subunit of protein phosphatase 1. This ubiquitous phosphatase is implicated in brain functions such as brain plasticity. Several variants detected in this study demonstrated suggestive association with outcome (p < 10(-5)), some of which are within or near genes with experimental evidence of influence on ischemic stroke volume and/or brain recovery (e.g., NTN4, TEK, and PTCH1). Conclusions In this large GWA study on functional outcome after ischemic stroke, we report one significant variant and several variants with suggestive association to outcome 3 months after stroke onset with plausible mechanistic links to poststroke recovery. Future replication studies and exploration of potential functional mechanisms for identified genetic variants are warranted.
  •  
10.
  •  
11.
  • Chen, X., et al. (author)
  • A genome-wide association study of IgM antibody against phosphorylcholine: shared genetics and phenotypic relationship to chronic lymphocytic leukemia
  • 2018
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 27:10, s. 1809-1818
  • Journal article (peer-reviewed)abstract
    • Phosphorylcholine (PC) is an epitope on oxidized low-density lipoprotein (oxLDL), apoptotic cells and several pathogens like Streptococcus pneumoniae. Immunoglobulin M against PC (IgM anti-PC) has the ability to inhibit uptake of oxLDL by macrophages and increase clearance of apoptotic cells. From our genome-wide association studies (GWASs) in four European-ancestry cohorts, six single nucleotide polymorphisms (SNPs) in 11q24.1 were discovered (in 3002 individuals) and replicated (in 646 individuals) to be associated with serum level of IgM anti-PC (the leading SNP rs35923643-G, combined beta = 0.19, 95% confidence interval 0.13-0.24, P = 4.3 x 10-11). The haplotype tagged by rs35923643-G (or its proxy SNP rs735665-A) is also known as the top risk allele for chronic lymphocytic leukemia (CLL), and a main increasing allele for general IgM. By using summary GWAS results of IgM anti-PC and CLL in the polygenic risk score (PRS) analysis, PRS on the basis of IgM anti-PC risk alleles positively associated with CLL risk (explained 0.6% of CLL variance, P = 1.2 x 10-15). Functional prediction suggested that rs35923643-G might impede the binding of Runt-related transcription factor 3, a tumor suppressor playing a central role in the immune regulation of cancers. Contrary to the expectations from the shared genetics between IgM anti-PC and CLL, an inverse relationship at the phenotypic level was found in a nested case-control study (30 CLL cases with 90 age- and sex-matched controls), potentially reflecting reverse causation. The suggested function of the top variant as well as the phenotypic association between IgM anti-PC and CLL risk needs replication and motivates further studies.
  •  
12.
  •  
13.
  • Wu, Ona, et al. (author)
  • Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  • 2019
  • In: Stroke. - 1524-4628. ; 50:7, s. 1734-1741
  • Journal article (peer-reviewed)abstract
    • Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Guo, J P, et al. (author)
  • The rat antigen-presenting lectin-like receptor complex influences innate immunity and development of infectious diseases.
  • 2009
  • In: Genes and immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 10:3, s. 227-36
  • Journal article (peer-reviewed)abstract
    • Genetic variation in the antigen-presenting lectin-like receptor gene complex (APLEC) associates with autoimmunity and arthritis in rats and humans. We hypothesized that the encoded C-type lectin-like receptors might influence innate immunity and responses to infectious agents. To test this hypothesis, we compared in vivo and in vitro phenotypes in DA rats and APLEC-congenic rats. Survival rates following infection with Staphylococcus aureus and Herpes simplex virus differed significantly between the two strains. Likewise, differential delayed type hypersensitivity (DTH), an immunological reaction involving T lymphocytes and macrophages, was observed in response to provocation with the chemical oxazolone. Unstimulated bone marrow-derived macrophages from the two strains appeared to already have polarized activation states with different mRNA levels of CD163 and Dectin-1 receptors. Following stimulation with a panel of microbial agents, differences in induced mRNA and protein levels were shown for interleukin (IL)-6 and IL-10 following stimulation with lipopolysaccharide, mannan and beta-glucan. Expression levels of APLEC gene mRNAs also differed, and both strains had a notably dichotomous expression of the genes, with general downregulation of all four Dcir genes and upregulation of Mincle and Mcl. We suggest that human APLEC genes may similarly regulate infectious diseases, DTH and general macrophage activation status.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Nielson, Carrie M., et al. (author)
  • Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2
  • 2016
  • In: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 31:12, s. 2085-2097
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n=15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n=21,701) and clinical vertebral fracture (n=5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF]=3%) was associated with higher vBMD (β=0.22, p=1.9×10-8) and decreased risk of radiographic vertebral fracture (odds ratio [OR]=0.75; false discovery rate [FDR] p=0.01). In 1p36.12, rs12742784 (MAF=21%) was associated with higher vBMD (β=0.09, p=1.2×10-10) and decreased risk of clinical vertebral fracture (OR=0.82; FDR p=7.4×10-4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β=0.28, FDR p=0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β=0.12, FDR p=1.7×10-3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence.
  •  
24.
  •  
25.
  •  
26.
  • Bernardshaw, E., et al. (author)
  • Antibiotic therapy of neuroborreliosis: A survey among infectious disease specialists and neurologists in Norway, Sweden, and Denmark
  • 2022
  • In: Ticks and Tick-Borne Diseases. - : Elsevier BV. - 1877-959X. ; 13:6
  • Journal article (peer-reviewed)abstract
    • Introduction: Neuroborreliosis (NB) is a prevalent tick-borne neuroinfection in Europe. To delineate current practice in antimicrobial management of adults with NB and to prioritize future trials needed to optimize treatment recommendations, a questionnaire-based survey was performed.Methods: A self-administered Internet-based survey of NB treatment practices among specialists in infectious diseases and neurology based in Norway, Sweden, and Denmark was carried out between October 2021 and February 2022. The participants were also asked to prioritize four pre-defined research questions for randomized controlled trials (RCTs) on therapy for NB.Results: In total, 290 physicians (45% female) from Norway (30%), Sweden (40%), and Denmark (30%) participated in the survey. Of the responders, 230 (79%) were infectious disease specialists and 56 (19%) were neurologists.The preferred antibiotic treatment for patients with early NB was oral doxycycline (n = 225, 78%). Intravenous (IV) penicillin, ceftriaxone, or cefotaxime for the full treatment course was favored by 12%. A preferred treat-ment duration of 10-14 days for patients with NB was reported by 245 respondents (85%), most common among participants from Sweden (97%).A total of 170 (59%) responders reported having local hospital guidelines on the treatment of NB, most often with recommendation of oral doxycycline (92%) for 10-14 days (90%) as first line treatment. The prioritization score for future RCTs was highest for adjunctive prednisone therapy in NB patients with facial palsy (median 5; IQR 4-6) and for placebo versus repeated antibiotics in patients with persistent symptoms after completed antibiotic therapy for NB (median 5, IQR 3-6).Conclusion: In Sweden, all respondents preferred treating NB with oral doxycycline for 10-14 days, whereas 5% in Norway and 19% in Denmark still treat NB with IV antibiotics for the entire treatment course. RCTs to define the role of adjunctive prednisolone in NB patients with facial palsy and repeated antibiotics in patients with persistent symptoms are prioritized for future research.
  •  
27.
  • Espenes, J., et al. (author)
  • Regression-based normative data for the Rey Auditory Verbal Learning Test in Norwegian and Swedish adults aged 49-79 and comparison with published norms
  • 2023
  • In: Clinical Neuropsychologist. - : Informa UK Limited. - 1385-4046 .- 1744-4144. ; 37:6, s. 1276-1301
  • Journal article (peer-reviewed)abstract
    • Objective: The Rey Auditory Verbal Learning Test (RAVLT) is a widely used measure of episodic verbal memory. To our knowledge, culturally adapted and demographically adjusted norms for the RAVLT are currently not available for Norwegian and Swedish adults, and imported North American norms are often used. We here develop regression-based norms for Norwegian and Swedish adults and compare our norms to North American norms in an independent sample of cognitively healthy adults. Method: Participants were 244 healthy adults from Norway and Sweden between the aged 49 and 79 years, with between 6 and 24 years of education. Using a multiple multivariate regression-based norming procedure, we estimated effects of age, sex, and years of education on basic and derived RAVLT test scores. The newly developed norms were assessed in an independent comparison group of cognitively healthy adults (n = 145) and compared to recently published North American regression-based norms. Results: Lower age, female sex and more years of education predicted higher performance on the RAVLT. The new norms adequately adjusted for age, education, and sex in the independent comparison group. The American norms corrected for demographics on all RAVLT trials except trials 4, 7, list B, and trials 1-5 total. Test-retest (M = 2.55 years) reliability varied from poor to good. Conclusion: We propose regression-based norms for the RAVLT adjusting for pertinent demographics. The norms may be used for assessment of Norwegian and Swedish adults between the aged of 49 and 79 years, with between 6 and 24 years of education.
  •  
28.
  • Larsson, E, et al. (author)
  • Serum concentrations of cartilage oligomeric matrix protein, fibrinogen and hyaluronan distinguish inflammation and cartilage destruction in experimental arthritis in rats.
  • 2002
  • In: Rheumatology. - : Oxford University Press (OUP). - 1462-0332 .- 1460-2172 .- 1462-0324. ; 41, s. 996-
  • Journal article (peer-reviewed)abstract
    • OBJECTIVES:We investigated if changes in serum/plasma fibrinogen (FIB), hyaluronan (HA) and cartilage oligomeric matrix protein (COMP) levels can be used to differentiate between inflammation and cartilage involvement during arthritis. METHODS:Collagen-induced arthritis (CIA), oil-induced arthritis (OIA) and for comparison, experimental autoimmune encephalitis (EAE) induced in DA rats were investigated. RESULTS:Elevations of FIB concentrations were apparent at days 4-7 post-immunization in both arthritis models reaching a maximum on day 20-21, i.e. before peak arthritis. Elevations of HA in both models were seen shortly before macroscopically apparent arthritis, and peaked at or just before maximal arthritis, i.e. later in CIA than in OIA. COMP levels increased only after onset of arthritis and peaked late in disease (days 34-37), being significantly higher in the more destructive CIA compared with the less destructive OIA. During EAE flares, only FIB levels increased. CONCLUSIONS:FIB is a general inflammation marker, HA appears to be a marker for synovitis and changes in COMP levels appear to reflect the cartilage destruction process.
  •  
29.
  •  
30.
  • Rintisch, Carola, et al. (author)
  • Finemapping of the arthritis QTL Pia7 reveals co-localization with Oia2 and the APLEC locus.
  • 2010
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; Apr 7, s. 239-245
  • Journal article (peer-reviewed)abstract
    • In this study, we sought to determine the effect of the quantitative trait locus Pia7 on arthritis severity. The regulatory locus derived from the arthritis-resistant E3 rat strain was introgressed into the arthritis-susceptibility DA strain through continuous backcrossing. Congenic rats were studied for their susceptibility to experimental arthritis using pristane and adjuvant oil. In addition, cell number and function of various leukocyte populations were analyzed either under naive or stimulated conditions. We found that the minimal congenic fragment of DA.E3-Pia7 rats overlapped with the minimal fragment in DA.PVG-Oia2 congenic rats, which has been positionally cloned to the antigen-presenting lectin-like receptor complex (APLEC) genes. DA.E3-Pia7 congenic rats were protected from both PIA and OIA, but the protection was more pronounced in OIA. In adoptive transfer experiments we observed that the Pia7 locus controlled the priming of arthritogenic T cells and not the effector phase. In addition, Pia7 congenic rats had a significant higher frequency of B cells and granulocytes as well as TNFalpha production after stimulation, indicating a higher activation state of cells of the innate immune system. In conclusion, this study shows that the APLEC locus is a major locus regulating the severity of experimentally induced arthritis in rats.Genes and Immunity advance online publication, 4 March 2010; doi:10.1038/gene.2010.2.
  •  
31.
  •  
32.
  •  
33.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-33 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view