SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lork Alicia) "

Sökning: WFRF:(Lork Alicia)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aref, Mohaddeseh, et al. (författare)
  • Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients
  • 2021
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 93:47, s. 15744-15751
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a pH nanosensor conceived for single intracellular measurements. The sensing architecture consisted of a two-electrode system evaluated in the potentiometric mode. We used solid-contact carbon nanopipette electrodes tailored to produce both the indicator (pH nanosensor) and reference electrodes. The indicator electrode was a membrane-based ion-selective electrode containing a receptor for hydrogen ions that provided a favorable selectivity for intracellular measurements. The analytical features of the pH nanosensor revealed a Nernstian response (slope of -59.5 mV/pH unit) with appropriate repeatability and reproducibility (variation coefficients of <2% for the calibration parameters), a fast response time (<5 s), adequate medium-term drift (0.7 mV h(-)(1)), and a linear range of response including physiological and abnormal cell pH levels (6.0-8.5). In addition, the position and configuration of the reference electrode were investigated in cell-based experiments to provide unbiased pH measurements, in which both the indicator and reference electrodes were located inside the same cell, each of them inside two neighboring cells, or the indicator electrode inside the cell and the reference electrode outside of (but nearby) the studied cell. Finally, the pH nanosensor was applied to two cases: (i) the tracing of the pH gradient from extra-to intracellular media over insertion into a single PC12 cell and (ii) the monitoring of variations in intracellular pH in response to exogenous administration of pharmaceuticals. It is anticipated that the developed pH nanosensor, which is a label-free analytical tool, has high potential to aid in the investigation of pathological states that manifest in cell pH misregulation, with no restriction in the type of targeted cells.
  •  
2.
  • Berlin, Emmanuel, et al. (författare)
  • Lipid organization and turnover in the plasma membrane of human differentiating neural progenitor cells revealed by time-of-flight secondary ion mass spectrometry imaging
  • 2024
  • Ingår i: TALANTA. - 0039-9140 .- 1873-3573. ; 272
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane lipids have been known to influence multiple signalling and cellular processes. Dysregulation of lipids at the neuronal membrane is connected to a significant alteration of the brain function and morphology, leading to brain diseases and neurodegeneration. Understanding the lipid composition and turnover of neuronal membrane will provide a significant insight into the molecular events underlying the regulatory effects of these biomolecules in a neuronal system. In this study, we aimed to characterize the composition and turnover of the plasma membrane lipids in human neural progenitor cells (NPCs) at an early differentiation stage into midbrain neurons using ToF-SIMS imaging. Lipid composition of the native plasma membrane was explored, followed by an examination of the lipid turnover using different isotopically labelled lipid precursors, including 13C-choline, 13C-lauric acid, 15N-linoleic, and 13C-stearic. Our results showed that differentiating NPCs contain a high abundance of ceramides, glycerophosphoserines, neutral glycosphingolipids, diradylglycerols, and glycerophosphocholines at the plasma membrane. In addition, different precursors were found to incorporate into different membrane lipids which are specific for the short- or long -carbon chains, and the unsaturation or saturation stage of the precursors. The lipid structure of neuronal membrane reflects the differentiation status of NPCs, and it can be altered significantly using a particular lipid precursor. Our study illustrates a potential of ToF-SIMS imaging to study native plasma membrane lipids and elucidate complex cellular processes by providing molecular -rich information at a cell level.
  •  
3.
  • Lork, Alicia, et al. (författare)
  • Subcellular protein turnover in human neural progenitor cells revealed by correlative electron microscopy and nanoscale secondary ion mass spectrometry imaging
  • 2024
  • Ingår i: CHEMICAL SCIENCE. - 2041-6520 .- 2041-6539.
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein turnover is a critical process for accurate cellular function, in which damaged proteins in the cells are gradually replaced with newly synthesized ones. Many previous studies on cellular protein turnover have used stable isotopic labelling by amino acids in cell culture (SILAC), followed by proteomic bulk analysis. However, this approach does not take into account the heterogeneity observed at the single-cell and subcellular levels. To address this, we investigated the protein turnover of neural progenitor cells at the subcellular resolution, using correlative TEM and NanoSIMS imaging, relying on a pulse-chase analysis of isotopically-labelled protein precusors. Cellular protein turnover was found significantly heterogenous across individual organelles, which indicates a possible relation between protein turnover and subcellular activity. In addition, different isotopically-labelled amino acids provided different turnover patterns, in spite of all being protein precursors, suggesting that they undergo distinct protein synthesis and metabolic pathways at the subcellular level. Protein turnover is a critical process for accurate cellular function, in which damaged proteins in the cells are gradually replaced with newly synthesized ones.
  •  
4.
  • Nguyen, Tho D. K., et al. (författare)
  • Quantitative Chemical Imaging at the Cellular Level: SIMS, Fluorescence, and Correlative Techniques
  • 2022
  • Ingår i: Single Cell ‘Omics of Neuronal Cells. - New York, NY : Springer US. - 0893-2336. ; , s. 219-250
  • Bokkapitel (refereegranskat)abstract
    • The cell is a heterogeneous chemical structure designed to accommodate its complex cellular functions in a living organism. Quantitative chemical imaging at the cellular level enables the investigation of the structural and functional molecular relation underlying cellular processes. We describe here the detailed methodology of the state-of-the-art secondary ion mass spectrometry (SIMS, NanoSIMS) and fluorescence microscopy (confocal, STED), along with selected examples for quantitative imaging at the cellular level. Correlative imaging that combines different imaging techniques is also demonstrated for selected applications in cell imaging. This chapter serves as a guideline assisting readers from unfamiliar fields of research to obtain reliable imaging at the cellular level while highlighting the strengths, limitations, and potentials of these technologies for cell imaging.
  •  
5.
  • Nguyen, Tho D. K., et al. (författare)
  • Quantitative Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) Imaging of Individual Vesicles to Investigate the Relation between Fraction of Chemical Release and Vesicle Size
  • 2023
  • Ingår i: Angewandte Chemie. - 0044-8249 .- 1521-3757. ; 62:28
  • Tidskriftsartikel (refereegranskat)abstract
    • We used correlative transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to quantify the contents of subvesicular compartments, and to measure the partial release fraction of C-13-dopamine in cellular nanovesicles as a function of size. Three modes of exocytosis comprise full release, kiss-and-run, and partial release. The latter has been subject to scientific debate, despite a growing amount of supporting literature. We tailored culturing procedures to alter vesicle size and definitively show no size correlation with the fraction of partial release. In NanoSIMS images, vesicle content was indicated by the presence of isotopic dopamine, while vesicles which underwent partial release were identified by the presence of an I-127-labelled drug, to which they were exposed during exocytosis allowing entry into the open vesicle prior to its closing again. Demonstration of similar partial release fractions indicates that this mode of exocytosis is predominant across a wide range of vesicle sizes.
  •  
6.
  • Nguyen, Tho D. K., et al. (författare)
  • Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells
  • 2022
  • Ingår i: Acs Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 16:3, s. 4831-4842
  • Tidskriftsartikel (refereegranskat)abstract
    • For decades, "all-or-none"and "kiss-and-run"were thought to be the only major exocytotic release modes in cell-to-cell communication, while the significance of partial release has not yet been widely recognized and accepted owing to the lack of direct evidence for exocytotic partial release. Correlative imaging with transmission electron microscopy and NanoSIMS imaging and a dual stable isotope labeling approach was used to study the cargo status of vesicles before and after exocytosis; demonstrating a measurable loss of transmitter in individual vesicles following stimulation due to partial release. Model secretory cells were incubated with 13C-labeled l-3,4-dihydroxyphenylalanine, resulting in the loading of 13C-labeled dopamine into their vesicles. A second label, di-N-desethylamiodarone, having the stable isotope 127I, was introduced during stimulation. A significant drop in the level of 13C-labeled dopamine and a reduction in vesicle size, with an increasing level of 127I-, was observed in vesicles of stimulated cells. Colocalization of 13C and 127I- in several vesicles was observed after stimulation. Thus, chemical visualization shows transient opening of vesicles to the exterior of the cell without full release the dopamine cargo. We present a direct calculation for the fraction of neurotransmitter release from combined imaging data. The average vesicular release is 60% of the total catecholamine. An important observation is that extracellular molecules can be introduced to cells during the partial exocytotic release process. This nonendocytic transport process appears to be a general route of entry that might be exploited pharmacologically. © 2022 The Authors. Published by American Chemical Society.
  •  
7.
  • Rabasco, Stefania, et al. (författare)
  • Characterization of Stress Granule Protein Turnover in Neuronal Progenitor Cells Using Correlative STED and NanoSIMS Imaging
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Stress granules (SGs) are stress-induced biomolecular condensates which originate primarily from inactivated RNA translation machinery and translation initiation factors. SG formation is an important defensive mechanism for cell survival, while its dysfunction has been linked to neurodegenerative diseases. However, the molecular mechanisms of SG assembly and disassembly, as well as their impacts on cellular recovery, are not fully understood. More thorough investigations into the molecular dynamics of SG pathways are required to understand the pathophysiological roles of SGs in cellular systems. Here, we characterize the SG and cytoplasmic protein turnover in neuronal progenitor cells (NPCs) under stressed and non-stressed conditions using correlative STED and NanoSIMS imaging. We incubate NPCs with isotopically labelled (15N) leucine and stress them with the ER stressor thapsigargin (TG). A correlation of STED and NanoSIMS allows the localization of individual SGs (using STED), and their protein turnover can then be extracted based on the 15N/14N ratio (using NanoSIMS). We found that TG-induced SGs, which are highly dynamic domains, recruit their constituents predominantly from the cytoplasm. Moreover, ER stress impairs the total cellular protein turnover regimen, and this impairment is not restored after the commonly proceeded stress recovery period.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy