SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lu Xinhui) "

Sökning: WFRF:(Lu Xinhui)

  • Resultat 1-28 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Tao, et al. (författare)
  • 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend
  • 2021
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 5:4, s. 914-930
  • Tidskriftsartikel (refereegranskat)abstract
    • A SUMMARY There is an urgent demand for all-polymer organic solar cells (AP-OSCs) to gain higher efficiency. Here, we successfully improve the performance to 16.09% by introducing a small amount of BN-T, a B <- N-type polymer acceptor, into the PM6:PY-IT blend. It has been found that BN-T makes the active layer, based on the PM6:PY-IT:BN-T ternary blend, more crystalline but meanwhile slightly reduces the phase separation, leading to enhancement of both exciton harvesting and charge transport. From a thermodynamic viewpoint, BN-T prefers to reside between PM6 and PY-IT, and the fraction of this fine-tunes the morphology. Besides, a significantly reduced nonradiative energy loss occurs in the ternary blend, along with the coexistence of energy and charge transfer between the two acceptors. The progressive performance facilitated by these improved properties demonstrates that AP-OSCs can possibly comparably efficient with those based on small molecule acceptors, further enhancing the competitiveness of this device type.
  •  
2.
  • Fan, Baobing, et al. (författare)
  • Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics
  • 2023
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 145:10, s. 5909-5919
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with localisomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.
  •  
3.
  • Fan, Qunping, 1989, et al. (författare)
  • High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor
  • 2021
  • Ingår i: Science in China Series B. - : Springer Nature. - 1674-7291 .- 1869-1870. ; 64, s. 1380-1388
  • Tidskriftsartikel (refereegranskat)abstract
    • Anon-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells (all-PSCs), despite a low power conversion efficiency (PCE) caused by its narrow absorption spectra. Herein, a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of similar to 1.40 eV was developed, via polymerizing a large pi-fused small molecule acceptor (SMA) building block (namely YBO) with a non-conjugated thioalkyl linkage. Compared with its precursor YBO, PFY-2TS retains a similar low bandgap but a higher LUMO level. Moreover, compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC, PFY-2TS shows similar absorption spectrum and electron mobility, but significantly different molecular crystallinity and aggregation properties, which results in optimal blend morphology with a polymer donor PBDB-T and better device physical processes in all-PSCs. As a result, PFY-2TS-based all-PSCs achieved a PCE of 12.31% with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss (0.24 eV), which is better than that of 11.08% for the PFY-DTC-based ones. Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.
  •  
4.
  • Hart, Lucy J. F., et al. (författare)
  • Understanding the Role of Triplet-Triplet Annihilation in Non-Fullerene Acceptor Organic Solar Cells
  • 2023
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 13:36
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-fullerene acceptors (NFAs) have enabled power conversion efficiencies exceeding 19% in organic solar cells (OSCs). However, the open-circuit voltage of OSCs remains low relative to their optical gap due to excessive non-radiative recombination, and this now limits performance. Here, an important aspect of OSC design is considered, namely management of the triplet exciton population formed after non-geminate charge recombination. By comparing the blends PM6:Y11 and PM6:Y6, it is shown that the greater crystallinity of the NFA domains in PM6:Y11 leads to a higher rate of triplet-triplet annihilation (TTA). This is attributed to the four times larger ground state dipole moment of Y11 versus Y6, which improves the long range NFA out-of-plane ordering. Since TTA converts a fraction of the non-emissive triplet states into bright singlet states, it has the potential to reduce non-radiative voltage losses. Through a kinetic analysis of the recombination processes under 1-Sun illumination, a framework is provided for determining the conditions under which TTA may improve OSC performance. If these could be satisfied, TTA has the potential to reduce non-radiative voltage losses by up to several tens of millivolts.
  •  
5.
  • He, Chengliang, et al. (författare)
  • Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%
  • 2022
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the luminescence property without sacrificing the charge collection is one key to high-performance organic solar cells (OSCs), while limited by the severe non-radiative charge recombination. Here, we demonstrate efficient OSCs with high luminescence via the design and synthesis of an asymmetric non-fullerene acceptor, BO-5Cl. Blending BO-5Cl with the PM6 donor leads to a record-high electroluminescence external quantum efficiency of 0.1%, which results in a low non-radiative voltage loss of 0.178 eV and a power conversion efficiency (PCE) over 15%. Importantly, incorporating BO-5Cl as the third component into a widely-studied donor:acceptor (D:A) blend, PM6:BO-4Cl, allows device displaying a high certified PCE of 18.2%. Our joint experimental and theoretical studies unveil that more diverse D:A interfacial conformations formed by asymmetric acceptor induce optimized blend interfacial energetics, which contributes to the improved device performance via balancing charge generation and recombination. High-performance organic solar cells call for novel designs of acceptor molecules. Here, He et al. design and synthesize a non-fullerene acceptor with an asymmetric structure for diverse donor:acceptor interfacial conformations and report a certificated power conversion efficiency of 18.2%.
  •  
6.
  • He, Chengliang, et al. (författare)
  • Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 8:35, s. 18154-18161
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing near infrared (NIR) organic semiconductors is indispensable for promoting the performance of organic solar cells (OSCs), but addressing the trade-off between voltage and current density thus achieving high efficiency with low energy loss is still an urgent challenge. Herein, NIR acceptors (H1, H2 and H3) with a photoresponse beyond 1000 nm were developed by conjugating dithienopyrrolobenzothiadiazole to 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrileviavaried alkyl thiophene bridges. It was found that the linear outward chains in thiophene bridges could mitigate both the conformation disorder of H3 and the electronic disorder of the PBDB-T:H3 blends, which could help to form a favorable blend morphology, facilitating highly efficient photoelectric conversion in the resultant OSCs. As a result, devices based on PBDB-T:H3 achieve a high efficiency of 13.75% with a low energy loss of 0.55 eV, which is one of the highest efficiencies and the lowest energy loss among OSCs with an optoelectronic response near 1000 nm. This work provides a new design strategy towards NIR acceptors for efficient OSCs and future exploration of functional optoelectronics.
  •  
7.
  • Li, Shuixing, et al. (författare)
  • Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Low energy loss and efficient charge separation under small driving forces are the prerequisites for realizing high power conversion efficiency (PCE) in organic photovoltaics (OPVs). Here, a new molecular design of nonfullerene acceptors (NFAs) is proposed to address above two issues simultaneously by introducing asymmetric terminals. Two NFAs, BTP-S1 and BTP-S2, are constructed by introducing halogenated indandione (A(1)) and 3-dicyanomethylene-1-indanone (A(2)) as two different conjugated terminals on the central fused core (D), wherein they share the same backbone as well-known NFA Y6, but at different terminals. Such asymmetric NFAs with A(1)-D-A(2) structure exhibit superior photovoltaic properties when blended with polymer donor PM6. Energy loss analysis reveals that asymmetric molecule BTP-S2 with six chlorine atoms attached at the terminals enables the corresponding devices to give an outstanding electroluminescence quantum efficiency of 2.3 x 10(-2)%, one order of magnitude higher than devices based on symmetric Y6 (4.4 x 10(-3)%), thus significantly lowering the nonradiative loss and energy loss of the corresponding devices. Besides, asymmetric BTP-S1 and BTP-S2 with multiple halogen atoms at the terminals exhibit fast hole transfer to the donor PM6. As a result, OPVs based on the PM6:BTP-S2 blend realize a PCE of 16.37%, higher than that (15.79%) of PM6:Y6-based OPVs. A further optimization of the ternary blend (PM6:Y6:BTP-S2) results in a best PCE of 17.43%, which is among the highest efficiencies for single-junction OPVs. This work provides an effective approach to simultaneously lower the energy loss and promote the charge separation of OPVs by molecular design strategy.
  •  
8.
  • Li, Shuixing, et al. (författare)
  • Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Unveiling the correlations among molecular structures, morphological characteristics, macroscopic properties and device performances is crucial for developing better photovoltaic materials and achieving higher efficiencies. To achieve this goal, a comprehensive study is performed based on four state-of-the-art non-fullerene acceptors (NFAs), which allows to systematically examine the above-mentioned correlations from different scales. Its found that extending conjugation of NFA shows positive effects on charge separation promotion and non-radiative loss reduction, while asymmetric terminals can maximize benefits from both terminals. Another molecular optimization is from alkyl chain tuning. The shortened alkyl side chain results in strengthened terminal packing and decreased pi-pi distance, which contribute high carrier mobility and finally the high charge collection efficiency. With the most-acquired benefits from molecular structure and macroscopic factors, PM6:BTP-S9-based organic photovoltaics (OPVs) exhibit the optimal efficiency of 17.56% (certified: 17.4%) with a high fill factor of 78.44%, representing the best among asymmetric acceptor based OPVs. This work provides insight into the structure-performance relationships, and paves the way toward high-performance OPVs via molecular design. Understanding correlations between molecular structures and macroscopic properties is critical in realising highly efficient organic photovoltaics. Here, the authors conduct a comprehensive study based on four non-fullerene acceptors revealing how the extended conjugation, asymmetric terminals and alkyl chain length can affect device performance.
  •  
9.
  • Li, Xiaofang, et al. (författare)
  • Roles of Acceptor Guests in Tuning the Organic Solar Cell Property Based on an Efficient Binary Material System with a Nearly Zero Hole-Transfer Driving Force
  • 2020
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 32:12, s. 5182-5191
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-picosecond hole transfer has been recently observed in several narrow band gap nonfullerene small-molecule acceptor (NFA)-based binary blended organic solar cell (OSC) systems operating with negligible energetic driving forces. As the driving forces are near zero, how the added acceptor/donor guests tune the barrier-free hole-transfer dynamics of these systems remains very unclear. In this study, we report a new NFA (BTCT-2Cl) that conducts a sub-picosecond hole transfer (2 ps) for efficient photocurrent generation when pairing with PM6 though the energetic offset is only 0.02 eV. We observe that the added nonfullerene and PCBM components differently tune the charge generation and recombination when selectively exciting BTCT-2Cl. After adding PC71BM, the hole transfer from the host BTCT-2Cl to the host donor is greatly accelerated, with the rate significantly reduced to 0.29 ps and the charge generation becomes more efficient; on the contrary, recombination is prolonged and a larger fill factor is obtained after adding an NFA guest, here, IT-4F. The different tuning on the host binary hole-transfer dynamics is likely related with the phase crystallinity and the domain size changed after adding different acceptor guests. Over 16% efficiency is obtained on the PC71BM-based ternary device that outperforms the host binary and the IT-4F-based ternary solar cells (both showing over 15% efficiencies). The results clearly demonstrate that adding PCBM or NFA guests enables a very effective and different tuning on the hole-transfer rates and the recombination rates between the barrier-free host binary components, hence leading to efficient tuning on the short-circuit current density and fill factor, which outlines new strategies toward designing high-efficiency ternary blended OSC systems.
  •  
10.
  • Li, Zaifang, et al. (författare)
  • A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS
  • 2018
  • Ingår i: Advanced Electronic Materials. - : Wiley-VCH Verlagsgesellschaft. - 2199-160X. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A free-standing high-output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (approximate to 2500 S cm(-1)) structure-ordered poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS-PEDOT:PSS) with a Seebeck coefficient of 20.6 mu V K-1, an in-plane thermal conductivity of 0.64 W m(-1) K-1, and a peak power factor of 107 mu W K-2 m(-1) at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 +/- 18.7 mu W cm(-2), which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out-of-plane thermal conductivity of 0.27 W m(-1) K-1, and free-standing feature indicates the potential to integrate the FS-PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human bodys heat. In addition to the high power factor, the high thermal stability of the FS-PEDOT:PSS films up to 250 degrees C is confirmed by in situ temperature-dependent X-ray diffraction and grazing incident wide angle X-ray scattering, which makes the FS-PEDOT:PSS films promising candidates for thermoelectric applications.
  •  
11.
  • Liao, Xunfan, et al. (författare)
  • Regulating Favorable Morphology Evolution by a Simple Liquid-Crystalline Small Molecule Enables Organic Solar Cells with over 17% Efficiency and a Remarkable J(sc) of 26.56 mA/cm(2)
  • 2021
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 33:1, s. 430-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid crystal small molecules (LCSMs) are manifested as the effective additives to regulate the morphology of active layers and elevate the performance of ternary organic solar cells (TOSCs) in fullerene systems. However, the current studies for TOSCs based on efficient LCSMs are most out of the LC phase transition temperature, which is not conducive to accurately disclosure the effect of LCSMs on the morphology evolution. Besides, the inner working mechanism of LCSMs has not been investigated systematically and in-depth. Herein, a structurally simple donor-acceptor-donor type LCSM DFBT-TT6 with a low liquid crystal phase transition temperature is utilized as the third component to construct TOSCs based on a highly efficient nonfullerene system PM6:Y6. To unveil the work mechanism of LCSMs on the TOSCs performance and eliminate other interferences simultaneously, a structurally similar non-LCSM DFBT-DT6 with a low glass-transition temperature is further synthesized for a more clear comparison. Interestingly, the addition of DFBT-TT6 can delicately control the crystallinity and phase separation of PM6:Y6, rendering the optimized morphology with only 3 wt % DFBT-TT6. In contrast, the non-LCSM DFBT-DT6 shows a negligible effect on morphology regulation, indicating the unique ability of LC molecules in morphology control. The underlying working mechanism is revealed by the combined study of miscibility and the wetting coefficient of the blends, elucidating that the LCSM DFBT-TT6 has good compatibility with PM6 and Y6. Therefore, DFBT-TT6 is more prone to being located at the interface of PM6 and Y6, and it is energetically favorable for charge transfer. The aforementioned favorable morphology evolution is associated with improved crystallinity, phase separation, charge transfer, exciton dissociation, and collection efficiency, ultimately boosting the power conversion efficiency of TOSCs from 15.76% to 17.05% with a remarkable short-circuit current density of 26.56 mA/cm(2). This work not only offers deep insight into the LCSM induced morphology evolution but also puts forward an affordable strategy to achieve high-performance TOSCs.
  •  
12.
  • Liu, Yanfeng, et al. (författare)
  • In Situ Optical Spectroscopy Demonstrates the Effect of Solvent Additive in the Formation of All-Polymer Solar Cells
  • 2022
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 13:50, s. 11696-11702
  • Tidskriftsartikel (refereegranskat)abstract
    • 1-Chloronaphthalene (CN) has been a common solvent additive in both fullerene- A nd nonfullerene-based organic solar cells. In spite of this, its working mechanism is seldom investigated, in particular, during the drying process of bulk heterojunctions composed of a donor:acceptor mixture. In this work, the role of CN in all-polymer solar cells is investigated by in situ spectroscopies and ex situ characterization of blade-coated PBDB-T:PF5-Y5 blends. Our results suggest that the added CN promotes self-aggregation of polymer donor PBDB-T during the drying process of the blend film, resulting in enhanced crystallinity and hole mobility, which contribute to the increased fill factor and improved performance of PBDB-T:PF5-Y5 solar cells. Besides, the nonradiative energy loss of the corresponding device is also reduced by the addition of CN, corresponding to a slightly increased open-circuit voltage. Overall, our observations deepen our understanding of the drying dynamics, which may guide further development of all-polymer solar cells.
  •  
13.
  • Luo, Zhenghui, et al. (författare)
  • Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%
  • 2020
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 4:6, s. 1236-1247
  • Tidskriftsartikel (refereegranskat)abstract
    • Generally, it is important to fine-tune the energy levels of donor and acceptor materials in the field of polymer solar cell (PSCs) to achieve a minimal highest occupied molecular orbital (HOMO) energy offset, which yet is still sufficient for charge separation. Based on the high-performance small-molecule acceptor (SMA) of BTP-4F, we modified the end groups of BTP-4F from IC-2F to CPTCN-Cl. It was found that when both end groups were substituted by CPTCN-Cl, the energy level upshift was too large that caused unfavorable energetic alignment, thus poor device performance. By using the strategy of asymmetric end groups, we were able to achieve near optimal energy level match, resulting in higher open-circuit voltage (V-OC) and power conversion efficiency (PCE) compared with those given by the PM6:BTP-4F system. Our strategy can be useful and potentially applied to othermaterial systems for maximizing efficiency of non-fullerene PSCs.
  •  
14.
  • Luo, Zhenghui, et al. (författare)
  • Heteroheptacene-based acceptors with thieno[3,2-b]pyrrole yield high-performance polymer solar cells
  • 2022
  • Ingår i: NATIONAL SCIENCE REVIEW. - : Oxford University Press. - 2095-5138 .- 2053-714X. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationally utilizing and developing synthetic units is of particular significance for the design of high-performance non-fullerene small-molecule acceptors (SMAs). Here, a thieno[3,2-b]pyrrole synthetic unit was employed to develop a set of SMAs (ThPy1, ThPy2, ThPy3 and ThPy4) by changing the number or the position of the pyrrole ring in the central core based on a standard SMA of IT-4Cl, compared to which the four thieno[3,2-b]pyrrole-based acceptors exhibit bathochromic absorption and upshifted frontier orbital energy level due to the strong electron-donating ability of pyrrole. As a result, the polymer solar cells (PSCs) of the four thieno[3,2-b]pyrrole-based acceptors yield higher open-circuit voltage and lower energy loss relative to those of the IT-4Cl-based device. What is more, the ThPy3-based device achieves a power conversion efficiency (PCE) (15.3%) and an outstanding fill factor (FF) (0.771) that are superior to the IT-4Cl-based device (PCE = 12.6%, FF = 0.758). The ThPy4-based device realizes the lowest energy loss and the smallest optical band gap, and the ternary PSC device based on PM6:BTP-eC9:ThPy4 exhibits a PCE of 18.43% and a FF of 0.802. Overall, this work sheds light on the great potential of thieno[3,2-b]pyrrole-based SMAs in realizing low energy loss and high PCE. Four heteroheptacene-based acceptors using thieno[3,2-b]pyrrole building block were developed for the first time, and all the four acceptors-based devices realized high performance and low energy loss.
  •  
15.
  • Ma, Ruijie, et al. (författare)
  • Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells
  • 2020
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 5:8, s. 2711-2720
  • Tidskriftsartikel (refereegranskat)abstract
    • It is widely known that the miscibility between donor and acceptor is a crucial factor that affects the morphology and thus device performance of nonfullerene organic solar cells (OSCs). In this Letter, we show that incorporating a third component with lower miscibility and higher lowest unoccupied molecular orbital (LUMO) level into the state-of-the-art PM6:Y6 system can significantly enhance the performance of devices. The best results of the ternary devices are achieved by adding a small molecular acceptor named ITCPTC (similar to 5% w/w), which significantly improves the power conversion efficiency (PCE) of the host system from 16.44% to 17.42%. The higher LUMO of the third component increases the open-circuit voltage (V-oc), while the low miscibility enlarges the domains and leads to improved short-circuit current density (J(sc)) and fill factor (FF). The efficacy of this strategy is supported by using other nonfullerene third components including an asymmetric small molecule (N7IT) and a polymer acceptor (PF2-DTC), which play the same role as ITCPTC and boost the PCEs to 16.96% and 17.04%, respectively. Our approach can be potentially applied to a wide range of OSC material systems and should facilitate the development of the OSC field.
  •  
16.
  • Ma, Ruijie, et al. (författare)
  • All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives
  • 2022
  • Ingår i: Aggregate. - : Wiley. - 2692-4560 .- 2766-8541. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the robust and stable nature of the active layers, advancing the power conversion efficiency (PCE) has long been the priority for all-polymer solar cells (all-PSCs). Despite the recent surge of PCE, the photovoltaic parameters of the state-of-the-art all-PSC still lag those of the polymer:small molecule-based devices. To compete with the counterparts, judicious modulation of the morphology and thus the device electrical properties are needed. It is difficult to improve all the parameters concurrently for the all-PSCs with advanced efficiency, and one increase is typically accompanied by the drop of the other(s). In this work, with the aids of the solvent additive (1-chloronaphthalene) and the n-type polymer additive (N2200), we can fine-tune the morphology of the active layer and demonstrate a 16.04% efficient all-PSC based on the PM6:PY-IT active layer. The grazing incidence wide-angle X-ray scattering measurements show that the shape of the crystallites can be altered, and the reshaped crystallites lead to enhanced and more balanced charge transport, reduced recombination, and suppressed energy loss, which lead to concurrently improved and device efficiency and stability.
  •  
17.
  • Qin, Linqing, et al. (författare)
  • Triplet Acceptors with a D-A Structure and Twisted Conformation for Efficient Organic Solar Cells
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 59:35, s. 15043-15049
  • Tidskriftsartikel (refereegranskat)abstract
    • Triplet acceptors have been developed to construct high-performance organic solar cells (OSCs) as the long lifetime and diffusion range of triplet excitons may dissociate into free charges instead of net recombination when the energy levels of the lowest triplet state (T-1) are close to those of charge-transfer states ((CT)-C-3). The current triplet acceptors were designed by introducing heavy atoms to enhance the intersystem crossing, limiting their applications. Herein, two twisted acceptors without heavy atoms, analogues of Y6, constructed with large pi-conjugated core and D-A structure, were confirmed to be triplet materials, leading to high-performance OSCs. The mechanism of triplet excitons were investigated to show that the twisted and D-A structures result in large spin-orbit coupling (SOC) and small energy gap between the singlet and triplet states, and thus efficient intersystem crossing. Moreover, the energy level of T-1 is close to (CT)-C-3, facilitating the split of triplet exciton to free charges.
  •  
18.
  • Sun, Huiliang, et al. (författare)
  • A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency
  • 2019
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 12:11, s. 3328-3337
  • Tidskriftsartikel (refereegranskat)abstract
    • Thiophene and its derivatives have been extensively used in organic electronics, particularly in the field of polymer solar cells (PSCs). Significant research efforts have been dedicated to modifying thiophene-based units by attaching electron-donating or withdrawing groups to tune the energy levels of conjugated materials. Herein, we report the design and synthesis of a novel thiophene derivative, FE-T, featuring a monothiophene functionalized with both an electron-withdrawing fluorine atom (F) and an ester group (E). The FE-T unit possesses distinctive advantages of both F and E groups, the synergistic effects of which enable significant downshifting of the energy levels and enhanced aggregation/crystallinity of the resulting organic materials. Shown in this work are a series of polymers obtained by incorporating the FE-T unit into a PM6 polymer to fine-tune the energetics and morphology of this high-performance PSC material. The optimal polymer in the series shows a downshifted HOMO and an improved morphology, leading to a high PCE of 16.4% with a small energy loss (0.53 eV) enabled by the reduced non-radiative energy loss (0.23 eV), which are among the best values reported for non-fullerene PSCs to date. This work shows that the FE-T unit is a promising building block to construct donor polymers for high-performance organic photovoltaic cells.
  •  
19.
  • Wang, Chuan Fei, et al. (författare)
  • Diluted Organic Semiconductors in Photovoltaics
  • 2020
  • Ingår i: Solar RRL. - : WILEY-V C H VERLAG GMBH. - 2367-198X. ; 4:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Incorporation of insulating polymers or molecules into organic semiconductor films, creating so-called diluted organic semiconductors, has been successfully used both in organic field-effect transistors and organic light-emitting diodes to reduce sensitivity to charge traps. However, application of this strategy in organic photovoltaics is challenging due to the complex requirements on the light-absorbing blend layer. Herein, diluted donor-acceptor-insulator ternary organic solar cells are developed to improve mobility and decrease radiative and nonradiative recombination in the active layer. In addition, both thermal and environmental stability of the diluted ternary solar cells are enhanced. Finally, the diluted semiconductor approach enables large-area solar cells to be fabricated where the loss in power density upon cell area upscaling is five times lower than for the equivalent binary cells.
  •  
20.
  • Wen, Tian-Jiao, et al. (författare)
  • Non-fused medium bandgap electron acceptors for efficient organic photovoltaics
  • 2022
  • Ingår i: Journal of Energy Challenges and Mechanics. - : ELSEVIER. - 2056-9386. ; 70, s. 576-582
  • Tidskriftsartikel (refereegranskat)abstract
    • The cost-effective organic semiconductors are strongly needed in organic photovoltaics (OPVs). Herein, two medium bandgap (MBG) electron acceptors, TPT4F and TPT4Cl are developed via the new design of multi-noncovalent interaction assisted unfused core, flanked with two electron withdrawing end groups. These fullly non-fused MBG acceptors adapt the planar and rigid conformation in solid, therefore exhibiting the ordered face-on stacking and strong photoluminescence in films. As results, TPT4Cl-based OPVs, upon blending with the PBDB-TF polymer donor, have achieved a power conversion efficiency of 10.16% with a low non-radiative loss of 0.27 eV, representing one of the best fullly non-fused medium bandgap acceptors with desirable cost-efficiency balance. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
  •  
21.
  • Wu, Jingnan, 1994, et al. (författare)
  • Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 446
  • Tidskriftsartikel (refereegranskat)abstract
    • It had been commonly accepted in the organic photovoltaic (OPV) community that subtle variations in the molecular structure of active layer materials would cause profound impacts on their aggregating structure and blend morphology and therefore the performance of such polymer solar cells (PSCs). Herein, we employed an electron-deficient building block 3,6-dithiophenyl-2-carboxylate pyrazine (DTCPz) for constructing one series of promising donor terpolymers of PMZ1, PMZ2, and PMZ3, respectively, gaining their relatively lower-lying highest occupied molecular orbital (HOMO) energy levels, more closed π-π stacking and enhanced crystallinity in thin films, and lower miscibility with acceptor Y6, in comparison with their parent polymer counterpart (namely PM6). Reaching DTCPz moieties up to 20% (mol/mol%) in its terpolymer composition, the resulting polymer (PMZ2) achieved more favorable phase separation with improved exciton dissociation, and charge transport and extraction. As a result, an outstanding fill factor of 77.2% and a promising power conversion efficiency of 17.8 % was achieved. Moreover, the corresponding device shows better thermal stability over the PM6-based one. This work suggests a facile method for significantly improving the thin film morphology of the active-layer materials via fine-tuning the chemical structure of electron-deficient units on the backbone of the wide bandgap donor polymer, therefore achieving enhanced photovoltaic performance and thermal stability for practical applications.
  •  
22.
  • Xia, Xinxin, et al. (författare)
  • Revealing the crystalline packing structure of Y6 in the active layer of organic solar cells: the critical role of solvent additives
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 11:40, s. 21895-21907
  • Tidskriftsartikel (refereegranskat)abstract
    • The bulk heterojunction (BHJ) morphology of photovoltaic materials is crucial to the fundamental optoelectronic properties of organic solar cells (OSCs). However, in the photoactive layer, the intrinsic crystalline packing structure of Y6, currently the hallmark molecule among Y-series non-fullerene acceptors (NFAs), has not been unambiguously determined. Here, employing grazing-incidence wide-angle X-ray scattering (GIWAXS), we managed to uncover the intrinsic crystalline packing structure of Y6 in the BHJ active layer of OSCs, which is found to be different from its single-crystal structure reported previously. Moreover, we find that solvent additive 1-chloronaphthalene (CN) can induce highly ordered packing of Y6 in BHJ thin films. With the help of atomistic molecular dynamics simulations, it is revealed that pi-pi interactions generally exist between naphthalene derivatives and IC terminals of Y6 analogues, which would essentially improve their long-range ordering. Our work reveals the intrinsic crystalline packing structure of Y6 in the BHJ active layer as well as its crystallization mechanism in thin films, thus providing direct correlations between this crystalline packing and the device characteristics and photophysical properties.
  •  
23.
  • Yang, Lei, et al. (författare)
  • Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors
  • 2019
  • Ingår i: Science in China Series B. - : SCIENCE PRESS. - 1674-7291 .- 1869-1870. ; 62:7, s. 897-903
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of chalcogen heteroatom variation on donor materials has been systematically investigated. However, this effect on acceptors has rarely been explored. Herein, nonfullerene acceptors BFPSP and BFPTP were reported by simply changing the chalcogen atoms from S to Te. The differences between BFPSP and BFPTP in light absorption, energy levels, excited-state lifetimes, energy loss, charge mobilities, morphology, and photovoltaic properties were systematically investigated to understand the heteroatom effects. More importantly, the electroluminescence spectra, external quantum efficiency of photovoltaics and TD-DFT calculations revealed that the triplet excited state (T-1) in energy of BFPTP equals to the charge transfer (CT) state in PBDB-T:BFPTP, which allows T-1 excitons, generated by intersystem crossing, to split into free charges to contribute to the efficiency. This contribution provides a strategy for tuning the photophysical properties of nonfullerene acceptors and designing high performance triplet materials for OSCs.
  •  
24.
  • Yao, Nannan, et al. (författare)
  • In Situ Study the Dynamics of Blade-Coated All-Polymer Bulk Heterojunction Formation and Impact on Photovoltaic Performance of Solar Cells
  • 2023
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; , s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • All-polymer solar cells (all-PSCs) have achieved impressive progress by employing acceptors polymerized from well performing small-molecule non-fullerene acceptors. Herein, the device performance and morphology evolution in blade-coated all-PSCs based on PBDBT:PF5–Y5 blends prepared from two different solvents, chlorobenzene (CB), and ortho-xylene (o-XY) are studied. The absorption spectra in CB solution indicate more ordered conformation for PF5–Y5. The drying process of PBDBT:PF5–Y5 blends is monitored by in situ multifunctional spectroscopy and the final film morphology is characterized with ex situ techniques. Finer-mixed donor/acceptor nanostructures are obtained in CB-cast film than that in o-XY-cast ones, corresponding to more efficient charge generation in the solar cells. More importantly, the conformation of polymers in solution determines the overall film morphology and the device performance. The relatively more ordered structure in CB-cast films is beneficial for charge transport and reduced non-radiative energy loss. Therefore, to achieve high-performance all-PSCs with small energy loss, it is crucial to gain favorable aggregation in the initial stage in solution.
  •  
25.
  • Yu, Han, et al. (författare)
  • Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%
  • 2021
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorination of end groups has been a great success in developing efficient small molecule acceptors. However, this strategy has not been applied to the development of polymer acceptors. Here, a dihalogenated end group modified by fluorine and bromine atoms simultaneously, namely IC-FBr, is first developed, then employed to construct a new polymer acceptor (named PYF-T) for all-polymer solar cells (all-PSCs). In comparison with its non-fluorinated counterpart (PY-T), PYF-T exhibits stronger and red-shifted absorption spectra, stronger molecular packing and higher electron mobility. Meanwhile, the fluorination on the end groups down-shifts the energy levels of PYF-T, which matches better with the donor polymer PM6, leading to efficient charge transfer and small voltage loss. As a result, an all-PSC based on PM6:PYF-T yields a higher power conversion efficiency (PCE) of 14.1% than that of PM6:PY-T (11.1%), which is among the highest values for all-PSCs reported to date. This work demonstrates the effectiveness of fluorination of end-groups in designing high-performance polymer acceptors, which paves the way toward developing more efficient and stable all-PSCs.
  •  
26.
  • Zhan, Lingling, et al. (författare)
  • A Near-Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells
  • 2018
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 5:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, efficient organic solar cells (OSCs) are realized with the ternary blend of a medium band gap donor (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b]dithiophene))-alt-(5,5-(1,3-di-2-thienyl-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c]dithiophene-4,8-dione)] (PBDB-T)) with a low band gap acceptor (2,2-((2Z,2Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b]dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HF-PCIC)) and a near-infrared acceptor (2,2-((2Z,2Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO-4F)). It is shown that the introduction of IEICO-4F third component into PBDB-T:HF-PCIC blend increases the short-circuit current density (J(sc)) of the ternary OSC to 23.46 mA cm(-2), with a 44% increment over those of binary devices. The significant current improvement originates from the broadened absorption range and the active layer morphology optimization through the introduction of IEICO-4F component. Furthermore, the energy loss of the ternary cells (0.59 eV) is much decreased over that of the binary cells (0.80 eV) due to the reduction of both radiative recombination from the absorption below the band gap and nonradiative recombination upon the addition of IEICO-4F. Therefore, the power conversion efficiency increases dramatically from 8.82% for the binary cells to 11.20% for the ternary cells. This work provides good examples for simultaneously achieving both significant current enhancement and energy loss mitigation in OSCs, which would lead to the further construction of highly efficient ternary OSCs.
  •  
27.
  • Zhang, Xin, et al. (författare)
  • High-Performance All-Small-Molecule Organic Solar Cells Enabled by Regio-Isomerization of Noncovalently Conformational Locks
  • 2022
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 32:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiencies (PCEs) of organic solar cells (OSCs) have surpassed 19% thanks to the innovation of polymer donors and molecular acceptors. However, the batch-to-batch variations in polymer materials are detrimental to the reproducibility of the device performance. In comparison, small-molecule donors (SMDs) possess some unique advantages, such as well-defined molecular weights, easy purification, and excellent batch-to-batch repeatability. Herein, a pair of regioisomeric SMDs (BT-O1 and BT-O2) has been synthesized with alkoxy groups as S center dot center dot center dot O noncovalently conformational locks (NoCLs) at the inner and outer position, respectively. Theoretical and experimental results reveal that the regioisomeric effect has a significant influence on the light-harvest ability, energy levels, molecular geometries, internal reorganization energy, and packing behaviors for the two SMDs. As a result, BT-O2-based binary device shows an impressive PCE of 13.99%, much higher than that of BT-O1 based one (4.07%), due to the better-aligned energy level, more balanced charge transport, less charge recombination, lower energy loss, and more favorable phase separation. Furthermore, the fullerene derivative PC71BM is introduced into BT-O2:H3 as the third component to achieve a notable PCE of 15.34% (certified 14.6%). Overall, this work reveals that NoCLs is a promising strategy to achieve high-performance SMDs for all-small-molecule OSCs.
  •  
28.
  • Zhang, Xin, et al. (författare)
  • High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering
  • 2021
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 60:22, s. 12475-12481
  • Tidskriftsartikel (refereegranskat)abstract
    • Noncovalently fused-ring electron acceptors (NFREAs) have attracted much attention in recent years owing to their advantages of simple synthetic routes, high yields and low costs. However, the efficiencies of NFREAs based organic solar cells (OSCs) are still far behind those of fused-ring electron acceptors (FREAs). Herein, a series of NFREAs with S...O noncovalent intramolecular interactions were designed and synthesized with a two-step synthetic route. Upon introducing pi-extended end-groups into the backbones, the electronic properties, charge transport, film morphology, and energy loss were precisely tuned by fine-tuning the degree of multi-fluorination. As a result, a record PCE of 14.53 % in labs and a certified PCE of 13.8 % for NFREAs based devices were obtained. This contribution demonstrated that combining the strategies of noncovalent conformational locks and pi-extended end-group engineering is a simple and effective way to explore high-performance NFREAs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-28 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy