SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lubec G.) "

Sökning: WFRF:(Lubec G.)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Zhang, M. -D, et al. (författare)
  • Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord
  • 2016
  • Ingår i: Brain Structure and Function. - : Springer. - 1863-2653 .- 1863-2661. ; , s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal calcium-binding protein 1 and -2 (NECAB1/2) localize to multiple excitatory neuron populations in the mouse spinal cord. Here, we analyzed rat and human spinal cord, combining in situ hybridization and immunohistochemistry, complementing newly collated data on mouse spinal cord for direct comparisons. Necab1/2 mRNA transcripts showed complementary distribution in rodent’s spinal cord. Multiple-labeling fluorescence histochemistry with neuronal phenotypic markers localized NECAB1 to a dense fiber plexus in the dorsal horn, to neurons mainly in superficial layers and to commissural interneurons in both rodent species. NECAB1-positive (+) motor neurons were only found in mice. NECAB1 distribution in the human spinal cord was similar with the addition of NECAB1-like immunoreactivity surrounding myelinated axons. NECAB2 was mainly present in excitatory synaptic boutons in the dorsal horn of all three species, and often in calbindin-D28k+ neuronal somata. Rodent ependymal cells expressed calbindin-D28k. In humans, they instead were NECAB2+ and/or calretinin+. Our results reveal that the association of NECAB2 to excitatory neuronal circuits in the spinal cord is evolutionarily conserved across the mammalian species investigated so far. In contrast, NECAB1 expression is more heterogeneous. Thus, our study suggests that the phenotypic segregation of NECAB1 and -2 to respective excitatory and inhibitory spinal systems can underpin functional modalities in determining the fidelity of synaptic neurotransmission and neuronal responsiveness, and might bear translational relevance to humans.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Herrera-Marschitz, M, et al. (författare)
  • On the origin of extracellular glutamate levels monitored in the basal ganglia of the rat by in vivo microdialysis
  • 1996
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 66:4, s. 1726-1735
  • Tidskriftsartikel (refereegranskat)abstract
    • Several putative neurotransmitters and metabolites were monitored simultaneously in the extracellular space of neostriatum, substantia nigra, and cortex and in subcutaneous tissue of the rat by in vivo microdialysis. Glutamate (Glu) and aspartate (Asp) were at submicromolar and gamma-aminobutyric acid (GABA) was at nanomolar concentrations in all brain regions. The highest concentration of dopamine (DA) was in the neostriatum. Dynorphin B (Dyn B) was in the picomolar range in all brain regions. Although no GABA, DA, or Dyn B could be detected in subcutaneous tissue, Glu and Asp levels were 5 and approximately 5 and approximately 0.4 microM, respectively. Lactate and pyruvate concentrations were approximately 200 and approximately 10 microM in all regions. The following criteria were applied to ascertain the neuronal origin of substances quantified by microdialysis: sensitivity to (a) K+ depolarization, (b) Na+ channel blockade, (c) removal of extracellular Ca2+, and (d) depletion of presynaptic vesicles by local administration of alpha-latrotoxin. DA, Dyn B, and GABA largely satisfied all these criteria. In contrast, Glu and Asp levels were not greatly affected by K+ depolarization and were increased by perfusing with tetrodotoxin or with Ca2+-free medium, arguing against a neuronal origin. However, Glu and Asp, as well as DA and GABA, levels were decreased under both basal and K+-depolarizing conditions by alpha-latrotoxin. Because the effect of K+ depolarization on Glu and Asp could be masked by reuptake into nerve terminals and glial cells, the reuptake blocker dihydrokainic acid (DHKA) or L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was included in the microdialysis perfusion medium. The effect of K+ depolarization on Glu and Asp levels was increased by DHKA, but GABA levels were also affected. In contrast, PDC increased only Glu levels. It is concluded that there is pool of releasable Glu and Asp in the rat brain. However, extracellular levels of amino acids monitored by in vivo microdialysis reflect the balance between neuronal release and reuptake into surrounding nerve terminals and glial elements.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Seidl, Rainer, et al. (författare)
  • Deficient brain snRNP70K in patients with Down syndrome
  • 2001
  • Ingår i: Electrophoresis. - : Wiley-VCH Verlagsgesellschaft. - 0173-0835 .- 1522-2683. ; 22:1, s. 43-48
  • Tidskriftsartikel (refereegranskat)abstract
    • The small nuclear ribonucleoprotein 70K (snRNP 70K; U1-70 kDa) is an integral part of the spliceosome, a large RNA-protein complex catalyzing the removal of introns from nuclear pre-mRNA. snRNP is one of the best-studied essential subunits of snRNPs, is highly conserved and its inactivation was shown to result in complete inhibition of splicing. Applying subtractive hybridization, we found a sequence with 100% identity to snRNP absent in fetal Down syndrome (DS) brain. This observation made us determine snRNP-mRNA steady-state levels and protein levels in brains of adult patients with DS. snRNP-mRNA and protein levels of five individual brain regions of DS and controls each, were determined by blotting techniques. snRNP-mRNA steady state levels were significantly decreased in DS brain. Performing Western blots with monoclonal and human antibodies, snRNP protein levels were decreased in several regions of DS brain, although one monoclonal antibody did not reveal different snRNP-immunoreactivity. Although decreased snRNP-protein could be explained by decreased mRNA-steady state levels, another underlying mechanism might be suggested: snRNP is one of the death substrates rapidly cleaved during apoptosis by interleukin-1-beta-converting enzyme-like (ICE) proteases, which was well-documented by several groups. As apoptosis is unrequivocally taking place in DS brain leading to permanent cell loses, decreased snRNP-protein levels may therefore reflect decreased synthesis and increased apoptosis-related proteolytic cleavage.
  •  
22.
  •  
23.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy