SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lucchesi Romain) "

Sökning: WFRF:(Lucchesi Romain)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Longeard, Nicolas, et al. (författare)
  • The pristine dwarf-galaxy survey - III. Revealing the nature of the Milky Way globular cluster Sagittarius II
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:2, s. 2754-2762
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new spectroscopic study of the faint Milky Way satellite Sagittarius II. Using multiobject spectroscopy from the Fibre Large Array Multi-Element Spectrograph, we supplement the data set of Longeard et al. with 47 newly observed stars, 19 of which are identified as members of the satellite. These additional member stars are used to put tighter constraints on the dynamics and the metallicity properties of the system. We find a low velocity dispersion of sigma(SgrII)(v) = 1.7 +/- 0.5 km s(-1), in agreement with the dispersion of Milky Way globular clusters of similar luminosity. We confirm the very metal-poor nature of the satellite ([Fe/H](spectro)(SgrII) = -2.23 +/- 0.07) and find that the metallicity dispersion of Sgr II is not resolved, reaching only 0.20 at the 95 per cent confidence limit. No star with a metallicity below -2.5 is confidently detected. Therefore, despite the unusually large size of the system (r(h) = 35.5(-1.2)(-1.4) pc), we conclude that Sgr II is an old and metal-poor globular cluster of the Milky Way.
  •  
2.
  • Longeard, Nicolas, et al. (författare)
  • The Pristine dwarf galaxy survey - IV. Probing the outskirts of the dwarf galaxy Bootes I
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:2, s. 2348-2362
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new spectroscopic study of the dwarf galaxy Boötes I (Boo I) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system. We observed 36 high-probability Boo I stars selected using Gaia Early Data Release 3 proper motions and photometric metallicities from the Pristine survey. Out of those, 27 are found to be Boo I stars, resulting in an excellent success rate of 75 per cent at finding new members. Our analysis uses a new pipeline developed to estimate radial velocities and equivalent widths of the calcium triplet lines from Gaussian and Voigt line profile fits. The metallicities of 16 members are derived, including 3 extremely metal-poor stars ([Fe/H] < −3.0), which translates into a success rate of 25 per cent at finding them with the combination of Pristine and Gaia. Using the large spatial extent of our new members that spans up to 4.1 half-light radii and spectroscopy from the literature, we find a systemic velocity gradient of 0.40 ± 0.10 km s−1 arcmin−1 and a small but resolved metallicity gradient of −0.008 ± 0.003 dex arcmin−1. Finally, we show that Boo I is more elongated than previously thought with an ellipticity of ϵ = 0.68 ± 0.15. Its velocity and metallicity gradients as well as its elongation suggest that Boo I may have been affected by tides, a result supported by direct dynamical modelling.
  •  
3.
  • Sestito, Federico, et al. (författare)
  • The Pristine survey – X. A large population of low-metallicity stars permeates the Galactic disc
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 497:1, s. L7-L12
  • Tidskriftsartikel (refereegranskat)abstract
    • The orbits of the least chemically enriched stars open a window on the formation of our Galaxy when it was still in its infancy. The common picture is that these low-metallicity stars are distributed as an isotropic, pressure-supported component since these stars were either accreted from the early building blocks of the assembling Milky Way (MW), or were later brought by the accretion of faint dwarf galaxies. Combining the metallicities and radial velocities from the Pristine and LAMOST surveys and Gaia DR2 parallaxes and proper motions for an unprecedented large and unbiased sample of 1027 very metal poor stars at [Fe/H] ≤ −2.5 dex, we show that this picture is incomplete. We find that 31 per cent of the stars that currently reside spatially in the disc (⁠|Z|≤3kpc⁠) do not venture outside of the disc plane throughout their orbit. Moreover, this sample shows strong statistical evidence (at the 5.0σ level) of asymmetry in their kinematics, favouring prograde motion. The discovery of this population implies that a significant fraction of stars with iron abundances [Fe/H] ≤ −2.5 dex merged into, formed within, or formed concurrently with the MW disc and that the history of the disc was quiet enough to allow them to retain their disc-like orbital properties, challenging theoretical and cosmological models.
  •  
4.
  • Skuladottir, Asa, et al. (författare)
  • On the Pair-instability Supernova Origin of J1010+2358
  • 2024
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 968:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first (Population III) stars formed only out of H and He and were likely more massive than present-day stars. Massive Population III stars in the range 140-260 M-circle dot are predicted to end their lives as pair-instability supernovae (PISNe), enriching the environment with a unique abundance pattern, with high ratios of odd to even elements. Recently, the most promising candidate for a pure descendant of a zero-metallicity massive PISN (260 M-circle dot) was discovered by the LAMOST survey, the star J1010+2358. However, key elements to verify the high PISN contribution, C and Al, were missing from the analysis. To rectify this, we obtained and analyzed a high-resolution Very Large Telescope/UVES spectrum, correcting for 3D and/or non-local thermodynamic equilibrium effects. Our measurements of both C and Al give much higher values (similar to 1 dex) than expected from a 260 M-circle dot PISN. Furthermore, we find significant discrepancies with the previous analysis and therefore a much less pronounced odd-even pattern. Our results show that J1010+2358 cannot be a pure descendant of a 260 M-circle dot PISN. Instead, we find that the best-fit model consists of a 13 M-circle dot Population II core-collapse supernova combined with a Population III supernova. Alternative, less favored solutions (chi(2)/chi(2)(best) approximate to 2.3) include a 50% contribution from a 260 M-circle dot PISN or a 40% contribution from a Population III Type Ia supernova. Ultimately, J1010+2358 is certainly a unique star giving insights into the earliest chemical enrichment; however, this star is not a pure PISN descendant.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy