SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lucek E.) "

Sökning: WFRF:(Lucek E.)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wild, J. A., et al. (författare)
  • Midnight sector observations of auroral omega bands
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00I30-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of auroral omega bands on 28 September 2009. Although generally associated with the substorm recovery phase and typically observed in the morning sector, the features presented here occurred just after expansion phase onset and were observed in the midnight sector, dawnward of the onset region. An all-sky imager located in northeastern Iceland revealed that the omega bands were similar to 150 x 200 km in size and propagated eastward at similar to 0.4 km s(-1) while a colocated ground magnetometer recorded the simultaneous occurrence of Ps6 pulsations. Although somewhat smaller and slower moving than the majority of previously reported omega bands, the observed structures are clear examples of this phenomenon, albeit in an atypical location and unusually early in the substorm cycle. The THEMIS C probe provided detailed measurements of the upstream interplanetary environment, while the Cluster satellites were located in the tail plasma sheet conjugate to the ground-based all-sky imager. The Cluster satellites observed bursts of 0.1-3 keV electrons moving parallel to the magnetic field toward the Northern Hemisphere auroral ionosphere; these bursts were associated with increased levels of field-aligned Poynting flux. The in situ measurements are consistent with electron acceleration via shear Alfven waves in the plasma sheet similar to 8 R-E tailward of the Earth. Although a one-to-one association between auroral and magnetospheric features was not found, our observations suggest that Alfven waves in the plasma sheet are responsible for field-aligned currents that cause Ps6 pulsations and auroral brightening in the ionosphere. Our findings agree with the conclusions of earlier studies that auroral omega bands have a source mechanism in the midtail plasma sheet.
  •  
2.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
3.
  • Puhl-Quinn, P. A., et al. (författare)
  • Cluster and DMSP observations of SAID electric fields
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:A5, s. A05219-
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We report on magnetically conjugate Cluster and the Defense Meteorological Satellite Program (DMSP) satellite observations of subauroral ion drifts (SAID) during moderate geomagnetic activity levels on 8 April 2004. To our knowledge, the field-aligned separation of DMSP and Cluster (approximate to 28,000 km) is the largest separation ever analyzed with respect to the SAID phenomenon. Nonetheless, we show coherent, subauroral magnetosphere-ionosphere (MI) coupling along an entire field line in the post-dusk sector. The four Cluster satellites crossed SAID electric field channels with meridional magnitude E-M of 25 mV/m in situ and latitudinal extent Delta Lambda approximate to 0.5 degrees in the southern and northern hemispheres near 07:00 and 07:30 UT, respectively. Cluster was near perigee (R approximate to 4 R-E) and within 5 degrees (15 degrees) of the magnetic equator for the southern ( northern) crossing. The SAID were located near the plasmapause-within the ring current-plasmasphere overlap region. Downward field-aligned current signatures were observed across both SAID crossings. The most magnetically and temporally conjugate SAID field from DMSP F16A at 07:12 UT was practically identical in latitudinal size to that mapped from Cluster. Since the DMSP ion drift meter saturated at 3000 m/s (or similar to 114 mV/m) and the electrostatically mapped value for E-M from Cluster exceeded 300 mV/m, a magnitude comparison of E-M was not possible. Although the conjugate measurements show similar large-scale SAID features, the differences in substructure highlight the physical and chemical diversity of the conjugate regions.
  •  
4.
  • Andre, M., Behlke, R., Wahlund, J.E., Vaivads, A., Eriksson, A., Tjulin, A., Carozzi, T. D., Cully, C., Gustafsson, G., Sundkvist, D., Khotyaintsev, Y., Cornilleau-Wehrlin, N., Rezeau, L., Maksimovic, M., Lucek, E., Balogh, A., Dunlop, M., Lindqvist, P.A. (författare)
  • Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause.
  • 2001
  • Ingår i: Annales Geophysicae. ; 19:6, s. 1471-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have a
  •  
5.
  • Andre, M., et al. (författare)
  • Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:12-okt, s. 1471-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.
  •  
6.
  • Forsyth, C., et al. (författare)
  • Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:12, s. A12203-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modeling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.
  •  
7.
  • Hietala, H., et al. (författare)
  • Supermagnetosonic Jets behind a Collisionless Quasiparallel Shock
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 103:24, s. 245001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The downstream region of a collisionless quasiparallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multispacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasiparallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasiparallel shocks in many plasma environments.
  •  
8.
  • Hietala, H., et al. (författare)
  • Supermagnetosonic subsolar magnetosheath jets and their effects : from the solar wind to the ionospheric convection
  • 2012
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 30:1, s. 33-48
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been proposed that ripples inherent to the bow shock during radial interplanetary magnetic field (IMF) may produce local high speed flows in the magnetosheath. These jets can have a dynamic pressure much larger than the dynamic pressure of the solar wind. On 17 March 2007, several jets of this type were observed by the Cluster spacecraft. We study in detail these jets and their effects on the magnetopause, the magnetosphere, and the ionospheric convection. We find that (1) the jets could have a scale size of up to a few RE but less than similar to 6 R-E transverse to the XGSE axis; (2) the jets caused significant local magnetopause perturbations due to their high dynamic pressure; (3) during the period when the jets were observed, irregular pulsations at the geostationary orbit and localised flow enhancements in the ionosphere were detected. We suggest that these inner magnetospheric phenomena were caused by the magnetosheath jets.
  •  
9.
  • Savin, S., et al. (författare)
  • High energy jets in the Earth's magnetosheath : Implications for plasma dynamics and anomalous transport
  • 2008
  • Ingår i: JETP Letters. - 0021-3640 .- 1090-6487. ; 87:11, s. 593-599
  • Tidskriftsartikel (refereegranskat)abstract
    • High energy density Jets in the magnetosheath near the Earth magnetopause were observed by Interball-1 [1]. In this paper, we continue the investigation of this important physical phenomenon. New data provided by Cluster show that the magnetosheath kinetic energy density during more than one hour exhibits an average level and a series of peaks far exceeding the kinetic energy density in the undisturbed solar wind. This is a surprising finding because the kinetic energy of the upstream solar wind in equilibrium should be significantly diminished downstream in the magnetosheath due to plasma braking and thermalization at the bow shock. We suggest resolving the energy conservation problem by the fact that the nonequilibrium Jets appear to be locally superimposed on the background equilibrium magnetosheath, and, thus, the energy balance should be settled globally on the spatial scales of the entire dayside magnetosheath. We show that both the Cluster and Interball jets are accompanied by plasma superdiffusion and suggest that they are important for the energy dissipation and plasma transport. The character of the Jet-related turbulence strongly differs From that of known standard cascade models. We infer that these Jets may represent the phenomenon of the general physical occurrence observed in other natural systems, such as heliosphere, astrophysical, and fusion plasmas [2-10].
  •  
10.
  • Seehausen, Ole, et al. (författare)
  • Genomics and the origin of species
  • 2014
  • Ingår i: Nature reviews genetics. - : Springer Science and Business Media LLC. - 1471-0056 .- 1471-0064. ; 15:3, s. 176-192
  • Forskningsöversikt (refereegranskat)abstract
    • Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.
  •  
11.
  • Deng, X. H., et al. (författare)
  • Dynamics and waves near multiple magnetic null points in reconnection diffusion region
  • 2009
  • Ingår i: Journal of Geophysical Research. - : Blackwell Publishing. - 0148-0227 .- 2156-2202. ; 114:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the magnetic structure in the region where the magnetic field lines break and how reconnection happens is crucial to improving our understanding of three-dimensional reconnection. Here we show the in situ observation of magnetic null structures in the diffusion region, the dynamics, and the associated waves. Possible spiral null pair has been identified near the diffusion region. There is a close relation among the null points, the bipolar signature of the Z component of the magnetic field, and enhancement of the flux of energetic electrons up to 100 keV. Near the null structures, whistler-mode waves were identified by both the polarity and the power law of the spectrum of electric and magnetic fields. It is found that the angle between the fans of the nulls is quite close to the theoretically estimated maximum value of the group-velocity cone angle for the whistler wave regime of reconnection.
  •  
12.
  • Farrugia, C. J., et al. (författare)
  • "Crater" flux transfer events : Highroad to the X line?
  • 2011
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 116:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine Cluster observations of a so-called magnetosphere "crater FTE," employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to similar to 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
  •  
13.
  • Hasegawa, H., et al. (författare)
  • Reconstruction of a bipolar magnetic signature in an earthward jet in the tail : Flux rope or 3D guide-field reconnection?
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:A11, s. A11206-
  • Tidskriftsartikel (refereegranskat)abstract
    • Southward-then-northward magnetic perturbations are often seen in the tail plasma sheet, along with earthward jets, but the generation mechanism of such bipolar B-z ( magnetic flux rope created through multiple X-line reconnection, transient reconnection, or else) has been controversial. At similar to 2313 UT on 13 August 2002, Cluster encountered a bipolar B-z at the leading edge of an earthward jet, with one of the four spacecraft in the middle of the current sheet. Application to this bipolar signature of Grad-Shafranov ( GS) reconstruction, the technique for recovery of two-dimensional ( 2D) magnetohydrostatic structures, suggests that a flux rope with diameter of similar to 2 R-E was embedded in the jet. To investigate the validity of the GS results, the technique is applied to synthetic data from a three-dimensional ( 3D) MHD simulation, in which a bipolar B-z can be produced through localized ( 3D) reconnection in the presence of guide field B-y ( Shirataka et al., 2006) without invoking multiple X-lines. A flux rope-type structure, which does not in fact exist in the simulation, is reconstructed but with a shape elongated in the jet direction. Unambiguous identification of a mechanism that leads to an observed bipolar B-z thus seems difficult based on the topological property in the GS maps. We however infer that a flux rope was responsible for the bipolar pulse in this particular Cluster event, because the recovered magnetic structure is roughly circular, suggesting a relaxed and minimum energy state. Our results also indicate that one has to be cautious about interpretation of some ( e. g., force-free, or magnetohydrostatic) model-based results.
  •  
14.
  • Hasegawa, H., et al. (författare)
  • Retreat and reformation of X-line during quasi-continuous tailward-of-the-cusp reconnection under northward IMF
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:15, s. L15104-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations on 19-20 November 2006 by the Cluster spacecraft that were skimming the high-latitude dusk-flank magnetopause, which are consistent with more than one reconnection X-line present on the tailward side of the cusp under northward IMF. Evidence of quasi-continuous reconnection over 16 hours exists in the form of Alfvenic acceleration of magnetosheath ions found almost always when either of the satellites traversed the boundary. The data indicate that a dominant X-line was sunward of Cluster for most of the time, but ion velocity distributions consisting of two magnetosheath populations demonstrate that for part of the time, more than one X-line existed. Further, the motion of reconnected field lines shows that some X-line(s) retreated tailward. It is inferred that following the X-line retreat, another X-line reformed sunward of Cluster, leading tomultiple X-lines.
  •  
15.
  • Kawano, H., et al. (författare)
  • Pi 2 waves simultaneously observed by Cluster and CPMN ground-based magnetometers near the plasmapause
  • 2011
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 29:9, s. 1663-1672
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analyzed an event on 14 February 2003 in which Cluster satellites and the CPMN ground magnetometer chain made simultaneous observations of a Pi 2 pulsation along the same meridian. Three of the four Cluster satellites were located outside the plasmasphere, while the other one was located within the plasmasphere. By combining the multipoint observations in space and the multipoint observations on the ground, we have obtained a detailed L-profile of the Pi 2 signatures, which has not been done in the past. In addition, we have used a method called Independent Component Analysis (ICA) to separate out other superposed waves with similar spectral components. The result shows that the wave phase of the Pi 2 was the same up to L similar to 3.9 (corresponding to the plasmasphere), became earlier up to L similar to 4.1 (corresponding to the plasmapause boundary layer), and showed a delaying tendency up to L similar to 5.9 (corresponding to the plasmatrough). This systematic phase pattern, obtained for the first time by a combination of a ground magnetometer chain and multisatellites along a magnetic meridian with the aid of ICA, supports the interpretation that a Pi 2 signal propagated from a farther source and reached the plasmasphere.
  •  
16.
  • Keika, K., et al. (författare)
  • Response of the inner magnetosphere and the plasma sheet to a sudden impulse
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S35-
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] The passage of an interplanetary shock caused a sudden compression of the magnetosphere between 0900 UT and 0915 UT on 24 August 2005. An estimate of the shock normal from solar wind data obtained by Geotail upstream of the bow shock indicates symmetric compression with respect to the noon-midnight meridian. Compression-related disturbances of the magnetic and electric field and plasma motion were observed by Double Star Program (DSP) Tan Ce 1 (TC1) and Tan Ce 2 (TC2) in the inner magnetosphere and by the Cluster spacecraft in the dawnside plasma sheet. DSP/TC1 and TC2 observations suggest that the disturbances in the inner magnetosphere are propagating from the dayside magnetopause. Cluster S/C 4 observations indicate that the front normal of the disturbances in the dawnside plasma sheet is phi similar to 180 degrees at 0902: 50 UT and phi = 107 degrees at 0904: 34 UT, where phi is the longitude in GSM coordinates, if we assume that the measured electric field is on the front plane and the normal lies on the X-Y plane. The timing analysis applied to magnetic field data from the four Cluster spacecraft independently gives a front normal, which is calculated to be phi =131 degrees at about 0904: 20 UT. Shock-associated magnetic and electric field disturbances propagating from both the dayside and flank magnetopauses are detected in the plasma sheet; the latter makes the dominant contribution. Substorms are, however, not triggered at the passage of the disturbances.
  •  
17.
  •  
18.
  • Lemoine, Melissa, et al. (författare)
  • Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits
  • 2016
  • Ingår i: Biological Journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4066 .- 1095-8312. ; 118:3, s. 668-685
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species - the great tit Parus major - at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (F-ST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.
  •  
19.
  • Marklund, Göran T., et al. (författare)
  • Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:10, s. A10223-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster results are presented from the acceleration region of an auroral surge and connected horn arc, observed during an extended time period of substorm activity. The Cluster spacecraft crossed different magnetic local time (MLT) sectors of the surge and horn, with lag times of 2-10 min. Acceleration potential patterns are derived for the horn arc and for the double arc (surge and horn) at the surge front and deeper into the surge. The parallel potential drop of the horn arc ranged between 4 and 7 kV. At the surge front, two weakly coupled U-potentials with parallel potential drops of 8 (7) kV and 7 (5) kV were derived for the surge and horn, respectively, from the C3 (C4) data. A similar, more coupled pattern was derived for the region deeper into the surge. We also address how the field-aligned currents of the surge and horn system close in the ionosphere. The Cluster data allow almost simultaneous estimates of the latitudinal current closure at various MLT sectors. Significant net upward currents are derived for the horn and surge, whereas the currents at the surge front were found to be balanced. The net upward horn current is proposed to be fed by the zonal divergence of the westward Pedersen current in the horn, consistent with the acceleration potential decrease in the westward horn direction. The net upward surge current is proposed to be fed by the divergence of a westward electrojet and by localized downward currents adjacent to the surge.
  •  
20.
  • Marklund, Göran T., et al. (författare)
  • Evolution in space and time of the quasi-static acceleration potential of inverted-V aurora and its interaction with Alfvenic boundary processes
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00K13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Results are presented from Cluster crossings of the acceleration region of two inverted-V auroras located in the poleward part of an extensive substorm bulge. The particle and field data are used to infer the acceleration potentials of the arcs and their distribution in altitude and latitude. The C1 data are consistent with a symmetric potential pattern, composed of two negative U potentials and one positive U potential in between, and the C3 and C4 data are consistent with an asymmetric pattern, where the dominating potential structure extends deep into the polar cap boundary (PCB) region. The two patterns may either correspond to different stages of evolution of the same double arc system or represent two longitudinally separated double arc systems. For all spacecraft, the potential well of the poleward arc extends into the PCB region, whereas the density cavity does not but remains confined to R1. This suggests that the Alfvenic activity observed within the PCB region prevents the cavity formation, consistent with the associated FACs being roughly balanced over this region. The results show that Alfvenic and quasi-static acceleration operates jointly in the PCB region, varying from being about equally important (on C1) to being predominantly quasi-static (on C3/C4). The presence (absence) of an upward electron beam, associated with a positive potential structure and a downward current, observed by C1 (C4/C3) is expected from its short life time, shorter than the time lag between the Cluster spacecraft. The evolution involves both a broadening and a density reduction of the associated downward current sheet to below the critical current density above which parallel electric fields will form. The deepest potential well of 13 kV observed by C4 was located in Region 1, adjacent to the PCB region and coinciding with the deepest density cavity, with a minimum density of 0.1 cm(-3). The interface between Region 1 and the PCB region, coinciding with the steep density gradient, appears to be the leading edge of the cavity.
  •  
21.
  • Moen, J., Holtet, J.A., Pedersen, A., Lybekk, B., Svenes, K., Oksavik, K., Denig, W.F., Lucek, E., Søraas, F. and André, M. (författare)
  • Cluster boundary-layer measurements and optical observations at magnetically conjugate sites.
  • 2001
  • Ingår i: Annales Geophysicae. ; 19:6, s. 1655-1668
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cluster spacecraft experienced several boundary layer encounters when flying outbound from the magnetosphere to the magnetosheath in the dusk sector on 14 January 2001. The dayside boundary layer was populated by magnetosheath electrons, but not with
  •  
22.
  • Nakamura, R., et al. (författare)
  • Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S16-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on Cluster observations of a thin current sheet interval under the presence of a strong vertical bar B-Y vertical bar during a fast earthward flow interval between 1655 UT and 1703 UT on 17 August 2003. The strong vertical bar B-Y vertical bar in the tail could be associated with a strong IMF vertical bar B-Y vertical bar, but the large fluctuations in B-Y, not seen in the IMF, suggest that a varying reconnection rate causes a varying transport of B-Y-dominated magnetic flux and/or a change in B-Y due to the Hall-current system. During the encounter of the high-speed flow, an intense current layer was observed around 1655: 53 UT with a peak current density of 182 nA/m(2), the largest current density observed by the Cluster four-spacecraft magnetic field measurement in the magnetotail. The half width of this current layer was estimated to be similar to 290 km, which was comparable to the ion-inertia length. Its unique signature is that the strong current is mainly field-aligned current flowing close to the center of the plasma sheet. The event was associated with parallel heating of electrons with asymmetries, which suggests that electrons moving along the field lines can contribute to a strong dawn-to-dusk current when the magnetotail current sheet becomes sufficiently thin and active in a strong guide field case.
  •  
23.
  • Nakamura, R., et al. (författare)
  • Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:4, s. 1743-1754
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the evolution of dipolarization and associated disturbances of the near-Earth current sheet during a substorm on 27 October 2007, based upon Cluster multi-point, multi-scale observations of the night-side plasma sheet at X similar to - 10R(E). Three dipolarization events were observed accompanied by activations on ground magnetograms at 09: 07, 09: 14, and 09: 22 UT. We found that all these events consist of two types of dipolarization signatures: (1) Earthward moving dipolarization pulse, which is accompanied by enhanced rapid Earthward flux transport and is followed by current sheet disturbances with decrease in B-Z and enhanced local current density, and subsequent (2) increase in B-Z toward a stable level, which is more prominent at Earthward side and evolving tailward. During the 09: 07 event, when Cluster was located in a thin current sheet, the dipolarization and fast Earthward flows were also accompanied by further thinning of the current sheet down to a half-thickness of about 1000 km and oscillation in a kink-like mode with a period of similar to 15 s and propagating duskward. Probable cause of this "flapping current sheet" is shown to be the Earthward high-speed flow. The oscillation ceased as the flow decreased and the field configuration became more dipolar. The later rapid flux transport events at 09: 14 and 09: 22 UT took place when the field configuration was initially more dipolar and were also associated with B-Z disturbance and local current density enhancement, but to a lesser degree. Hence, current sheet disturbances induced by initial dipolarization pulses could differ, depending on the configuration of the current sheet.
  •  
24.
  • Ohtani, S., et al. (författare)
  • Cluster observations in the inner magnetosphere during the 18 April 2002 sawtooth event : Dipolarization and injection at r=4.6 R-E
  • 2007
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 112:A8
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study examines a sawtooth injection event that took place around 0800 UT on 18 April 2002 when the Cluster spacecraft were located in the inner magnetosphere in the premidnight sector. In association with this injection, Cluster, at a radial distance of 4.6 RE, observed that the local magnetic field became more dipolar and that both ion and electron fluxes increased without notable energy dispersion. These features were accompanied by intensifications of the equatorward component of a double- oval structure and also by an enhancement of the ring- current oxygen ENA flux. The event was also accompanied by large magnetic field ( a few tens of nT) and electric field ( a few tens of mV/ m) fluctuations with characteristic timescales of a few tens of seconds. These observations strongly suggest that this sawtooth injection extended not only widely in local time but also deeply into the inner magnetosphere. Interestingly, Cluster repeatedly observed dipolarization- like signatures afterward, which, however, were not associated with enhancements of local energetic ion flux or with geosynchronous dipolarization or injection signatures. Instead, these magnetic signatures were accompanied by oscillatory plasma motion in the radial direction with a characteristic timescale of about 10 min, which appears to be related to the westward propagation of a spatially periodic auroral structure. The associated azimuthal electric field component was well correlated with the time derivative of the north- south magnetic field component, suggesting that the observed electric field is inductive. These findings suggest that electromagnetic processes far inside geosynchronous orbit play an important role in energization of energetic ions and auroral dynamics during magnetospheric storms.
  •  
25.
  • Runov, A., et al. (författare)
  • Observations of an active thin current sheet
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze observations of magnetotail current sheet dynamics during a substorm between 2330 and 2400 UT on 28 August 2005 when Cluster was in the plasma sheet at [-17.2, -4.49, 0.03] R-E (GSM) with the foot points near the IMAGE ground-based network. Observations from the Cluster spacecraft, ground-based magnetometers, and the IMAGE satellite showed that the substorm started in a localized region near midnight, expanding azimuthally. A thin current sheet with a thickness of less than 900 km and current density of about 30 nA/m(2) was observed during 5 min around the substorm onset. The thinning of the current sheet was accompanied by tailward plasma flow at a velocity of -700 km/s and subsequent reversal to earthward flow at V-x approximate to 500 km/s coinciding with a B-z turning from -5 to + 10 nT. The analysis of magnetic and electric fields behavior and particle distributions reveals signatures of impulsive (with similar to 1 min timescale) activations of the thin current sheet. These observations were interpreted in the framework of transient reconnection, although the data analysis reveals serious disagreements with the classical 2.5-D X line model.
  •  
26.
  • Zhou, M., et al. (författare)
  • Observation of waves near lower hybrid frequency in the reconnection region with thin current sheet
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A02216-
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of waves and turbulence in the process of magnetic reconnection has been the subject of a great deal of studies and debates in the theoretical literature. Here we report the Cluster observations of electrostatic and electromagnetic waves near the lower hybrid frequency in the reconnection region with a thin current sheet. During the crossing of the separatrix with the reversal of plasma flow and Hall magnetic fields, strong electrostatic fluctuations near the lower hybrid frequency were observed, and the waves were polarized with a large angle to the ambient magnetic field. Strong electromagnetic fluctuations were observed in the center of the current sheet in the diffusion region. The dispersion properties of the electromagnetic wave are studied by using the interferometer method and are compared with the properties of lower hybrid drift instability. The role of the waves in reconnection is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy