SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lucek Elizabeth A.) "

Sökning: WFRF:(Lucek Elizabeth A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Behlke, Rico, et al. (författare)
  • Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth's quasi-parallel bow shock
  • 2004
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 31:16
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] For the first time, solitary waves (SWs) have been observed within short large-amplitude magnetic structures (SLAMS) upstream of the Earth's quasi-parallel bow shock. The SWs often occur as bipolar pulses in the electric field data and move parallel to the background magnetic field at velocities of v = 400–1200 km/s. They have peak-to-peak amplitudes in the parallel electric field of up to E′∥ = 65 mV/m and parallel scale sizes of L∥ ∼ 10 λD. The bipolar solitary waves exhibit negative potential structures of ∣Φ∥∣ = 0.4–2.2 V, i.e., eΦ∥/kTe ∼ 0.1. None of the theories commonly used to describe SWs adequately address these negative potential structures moving at velocities above the ion thermal speed in a weakly magnetized plasma.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Marklund, Göran T., et al. (författare)
  • Altitude Distribution of the Auroral Acceleration Potential Determined from Cluster Satellite Data at Different Heights
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:5, s. 055002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aurora, commonly seen in the polar sky, is a ubiquitous phenomenon occurring on Earth and other solar system planets. The colorful emissions are caused by electron beams hitting the upper atmosphere, after being accelerated by quasistatic electric fields at 1-2 RE altitudes, or by wave electric fields. Although aurora was studied by many past satellite missions, Cluster is the first to explore the auroral acceleration region with multiprobes. Here, Cluster data are used to determine the acceleration potential above the aurora and to address its stability in space and time. The derived potential comprises two upper, broad U-shaped potentials and a narrower S-shaped potential below, and is stable on a 5 min time scale. The scale size of the electric field relative to that of the current is shown to depend strongly on altitude within the acceleration region. To reveal these features was possible only by combining data from the two satellites.
  •  
7.
  • Sadeghi, Soheil, et al. (författare)
  • Spatiotemporal features of the auroral acceleration region as observed by Cluster
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116:12, s. A00K19-
  • Tidskriftsartikel (refereegranskat)abstract
    • A pair of negative electric potential structures associated with inverted-V aurora is investigated using electric and magnetic field, ion and electron data from the Cluster spacecraft, crossing the auroral acceleration region (AAR) at different altitudes above the Northern hemisphere midnight auroral oval. The spatial and temporal development of the acceleration structures is studied, given the magnetic conjunction opportunity and the one minute difference between the Cluster spacecraft crossings. The configuration allowed for estimation of characteristic times of development for the two structures and of the parallel electric field and potential drop for the more stable one. The first potential structure had a width of similar to 80 km (projected to the ionosphere) and was relatively short-lived, developing in less than 40 s and decaying in one minute. The parallel potential drop increased between altitudes of 1.13 R(E) and 1.3 R(E), whereas the acceleration potential above 1.3 R(E) remained almost unchanged during that time. This intensification occurred mainly after the time when the associated upward current had reached its maximum value. The second structure had a width of similar to 50 km and was subject to an increase by a factor of 3 of the parallel potential drop below 1.3 R(E), during about 40 s, after which it remained rather stable for one minute or more. Similarly here, the acceleration potential above 1.3 R(E) remained roughly unchanged. For the more stable second structure, an average parallel electric field between 1.13 and 1.3 R(E) could be estimated (similar to 0.56 mV/m). The conductance along the flux tube was also stable for one minute or more.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy