SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lukkari Kaarina) "

Sökning: WFRF:(Lukkari Kaarina)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Puttonen, Irma, et al. (författare)
  • Distribution and estimated release of sediment phosphorus in the northern Baltic Sea archipelagos
  • 2014
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier BV. - 0272-7714 .- 1096-0015. ; 145, s. 9-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus contents in the sediments were determined in archipelago areas of the northern Baltic Sea (Svealand in Sweden and Aland, SW Finland and W Uusimaa in Finland) during 2008-2012. Spatial and vertical distribution of phosphorus was studied by analysing sediment samples from 345 stations of different seabed substrate types. A sequential extraction method was applied to evaluate the pool of the potentially mobile phosphorus, i.e., the amount of phosphorus that can be expected to be released from sediments to water with time, and possibly support primary production. In addition, vertical distribution of immobile phosphorus forms in the sediments was used as a tool to assess phosphorus burial. The uppermost 2 cm of sediments were calculated to contain 126,000 tonnes of phosphorus in the study area covering 19,200 km(2) of the seafloor. Subtracting the assumed average background content (i.e. that assumed to be buried) of this total phosphorus content gave an estimation of 31,000-37,000 tonnes of potentially mobile phosphorus at the sediment surface. Redox sensitive iron-bound phosphorus accounts for two thirds of this pool. Compared with the total phosphorus input from the catchment of the entire Baltic Sea 29,000 tonnes in 2009 it can be concluded that the store of phosphorus that can be released with time from the sediments is large, and that internal phosphorus recycling processes thus may play a key role in phosphorus fluxes in the coastal zone. Spreading of hypoxia in the future, as recent modelling and sediment proxy results suggest, is likely to severely deteriorate the water quality, particularly in the archipelago areas where the water exchange is slow.
  •  
2.
  • Rydin, Emil, et al. (författare)
  • Contrasting distribution and speciation of sedimentary organic phosphorus among different basins of the Baltic Sea
  • 2023
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 68:4, s. 767-779
  • Tidskriftsartikel (refereegranskat)abstract
    • Recycling of phosphorus (P) from deoxygenated sediments perpetuates eutrophic conditions in parts of the Baltic Sea. Sedimentary organic P is a major source of dissolved P to the water column, but also a sink for permanent P burial. The mechanisms behind these two pathways are, however, largely unknown. Using new methods, we determined P in DNA and phospholipids, which are both found in all organisms. We also identified inositol phosphates that are particularly important in eukaryotes. Sediment cores were collected from contrasting basins in the Baltic Sea to study their relative contribution to the total P pool. We found high DNA-P/phospholipid-P ratios in surface sediments from the Bothnian Bay and Bothnian Sea. However, these ratios were low throughout profiles in euxinic Baltic Proper sediments. The elevated ratios present in sediments overlain by oxic bottom waters might indicate the presence of a microbial community stimulated by bioturbation, whereas the low DNA-P/phospholipid-P ratios in Baltic Proper sediments likely indicate an energy-limited microbial community, typical to the "deep biosphere" environment. Inositol-P was almost absent in euxinic Baltic Proper sediments that had a low total P amount compared to those in the other basins. We suggest that variability in the composition of sedimentary microbial communities among the Baltic Sea basins might cause differences in organic P forms that in turn affects its turnover.
  •  
3.
  • Schneider, Bernd, et al. (författare)
  • Environmental Impacts - Marine Biogeochemistry
  • 2015
  • Ingår i: Second Assessment of Climate Change for the Baltic Sea Basin. - Cham : Springer. - 9783319160054 - 9783319160061 ; , s. 337-361
  • Bokkapitel (refereegranskat)abstract
    • Marine biogeochemistry deals with the budgets and transformations of biogeochemically reactive elements such as carbon, nitrogen and phosphorus. Inorganic nitrogen and phosphorus compounds are the major nutrients and control organic matter (biomass) production in the surface water. Due to various anthropogenic activities, the input of these nutrients into the Baltic Sea has increased drastically during the last century and has enhanced the net organic matter production by a factor of 2-4 (eutrophication). This has led to detrimental oxygen depletion and hydrogen sulphide production in the deep basins of the Baltic Sea. Model simulations based on the Baltic Sea Action Plan (BSAP) indicate that current eutrophication and thus extension of oxygen-depleted areas cannot be reversed within the next hundred years by the proposed nutrient reduction measures. Another environmental problem is related to decreasing pH (acidification) that is caused by dissolution of the rising atmospheric CO2. Estimates indicate a decrease in pH by about 0.15 during the last 1-2 centuries, and continuation of this trend may have serious ecological consequences. However, the concurrent increase in the alkalinity of the Baltic Sea may have significantly counteracted acidification.
  •  
4.
  • Voss, Maren, et al. (författare)
  • Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 154:2, s. 385-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy