SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lundell LS) "

Sökning: WFRF:(Lundell LS)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Lundell, LS, et al. (författare)
  • Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4643-
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/obesity after TRF (8 h day−1) and extended feeding (EXF, 15 h day−1) in a randomised cross-over design (trial registration: ACTRN12617000165381). Here we show that muscle core clock gene expression was similar after both interventions. TRF increases the amplitude of oscillating muscle transcripts, but not muscle or serum metabolites. In muscle, TRF induces rhythmicity of several amino acid transporter genes and metabolites. In serum, lipids are the largest class of periodic metabolites, while the majority of phase-shifted metabolites are amino acid related. In conclusion, short-term TRF in overweight men affects the rhythmicity of serum and muscle metabolites and regulates the rhythmicity of genes controlling amino acid transport, without perturbing core clock gene expression.
  •  
11.
  • Massart, J, et al. (författare)
  • Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:7, s. 1807-1818
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs have emerged as important regulators of glucose and lipid metabolism in several tissues; however, their role in skeletal muscle remains poorly characterized. We determined the effects of the miR-29 family on glucose metabolism, lipid metabolism, and insulin responsiveness in skeletal muscle. We provide evidence that miR-29a and miR-29c are increased in skeletal muscle from patients with type 2 diabetes and are decreased following endurance training in healthy young men and in rats. In primary human skeletal muscle cells, inhibition and overexpression strategies demonstrate that miR-29a and miR-29c regulate glucose uptake and insulin-stimulated glucose metabolism. We identified that miR-29 overexpression attenuates insulin signaling and expression of insulin receptor substrate 1 and phosphoinositide 3-kinase. Moreover, miR-29 overexpression reduces hexokinase 2 expression and activity. Conversely, overexpression of miR-29 by electroporation of mouse tibialis anterior muscle decreased glucose uptake and glycogen content in vivo, concomitant with decreased abundance of GLUT4. We also provide evidence that fatty acid oxidation is negatively regulated by miR-29 overexpression, potentially through the regulation of peroxisome proliferator–activated receptor γ coactivator-1α expression. Collectively, we reveal that miR-29 acts as an important regulator of insulin-stimulated glucose metabolism and lipid oxidation, with relevance to human physiology and type 2 diabetes.
  •  
12.
  • Nylen, C, et al. (författare)
  • IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1
  • 2018
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 315:5, s. E995-E1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine monophosphate-activated protein kinase (AMPK) controls glucose and lipid metabolism and modulates inflammatory responses to maintain metabolic and inflammatory homeostasis during low cellular energy levels. The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) interferes with inflammatory pathways in skeletal muscle, but the mechanisms are undefined. We hypothesized that AMPK activation reduces cytokine mRNA levels by blocking transcription through one or several transcription factors. Three skeletal muscle models were used to study AMPK effects on cytokine mRNA: human skeletal muscle strips obtained from healthy men incubated in vitro, primary human muscle cells, and rat L6 cells. In all three skeletal muscle systems, AICAR acutely reduced cytokine mRNA levels. In L6 myotubes treated with the transcriptional blocker actinomycin D, AICAR addition did not further reduce Il6 or leukemia inhibitory factor ( Lif) mRNA, suggesting that AICAR modulates cytokine expression through regulating transcription rather than mRNA stability. A cross-species bioinformatic approach identified novel transcription factors that may regulate LIF and IL6 mRNA. The involvement of these transcription factors was studied after targeted gene-silencing by siRNA. siRNA silencing of the transcription factors nuclear transcription factor Y subunit c ( Nfyc), specificity protein 1 ( Sp1), and zinc finger and BTB domain containing 14 ( Zbtb14), or AMPK α1/α2 subunits, increased constitutive levels of Il6 and Lif. Our results identify novel candidates in the regulation of skeletal muscle cytokine expression and identify AMPK, Nfyc, Sp1, and Zbtb14 as novel regulators of immunometabolic signals from skeletal muscle.
  •  
13.
  • Nylen, C, et al. (författare)
  • Short-term low-calorie diet remodels skeletal muscle lipid profile and metabolic gene expression in obese adults
  • 2019
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 316:2, s. E178-E185
  • Tidskriftsartikel (refereegranskat)abstract
    • Diet intervention in obese adults is the first strategy to induce weight loss and improve insulin sensitivity. We hypothesized that improvements in insulin sensitivity after weight loss from a short-term dietary intervention tracks with alterations in expression of metabolic genes and abundance of specific lipid species. Eight obese, insulin-resistant, nondiabetic adults were recruited to participate in a 3-wk low-calorie diet intervention cohort study (1,000 kcal/day). Fasting blood samples and vastus lateralis skeletal muscle biopsies were obtained before and after the dietary intervention. Clinical chemistry and measures of insulin sensitivity were determined. Unbiased microarray gene expression and targeted lipidomic analysis of skeletal muscle was performed. Body weight was reduced, insulin sensitivity [measured by homeostatic model assessment of insulin resistance, (HOMA-IR)] was enhanced, and serum insulin concentration and blood lipid (triglyceride, cholesterol, LDL, and HDL) levels were improved after dietary intervention. Gene set enrichment analysis of skeletal muscle revealed that biosynthesis of unsaturated fatty acid was among the most enriched pathways identified after dietary intervention. mRNA expression of PDK4 and MLYCD increased, while SCD1 decreased in skeletal muscle after dietary intervention. Dietary intervention altered the intramuscular lipid profile of skeletal muscle, with changes in content of phosphatidylcholine and triglyceride species among the pronounced. Short-term diet intervention and weight loss in obese adults alters metabolic gene expression and reduces specific phosphatidylcholine and triglyceride species in skeletal muscle, concomitant with improvements in clinical outcomes and enhanced insulin sensitivity.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Trewin, AJ, et al. (författare)
  • Effect of N-acetylcysteine infusion on exercise-induced modulation of insulin sensitivity and signaling pathways in human skeletal muscle
  • 2015
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 309:4, s. E388-E397
  • Tidskriftsartikel (refereegranskat)abstract
    • —Reactive oxygen species (ROS) produced in skeletal muscle may play a role in potentiating the beneficial responses to exercise; however, the effects of exercise-induced ROS on insulin action and protein signaling in humans has not been fully elucidated. Seven healthy, recreationally active participants volunteered for this double-blind, randomized, repeated-measures crossover study. Exercise was undertaken with infusion of saline (CON) or the antioxidant N-acetylcysteine (NAC) to attenuate ROS. Participants performed two 1-h cycling exercise sessions 7–14 days apart, 55 min at 65% V̇o2peak plus 5 min at 85%V̇o2peak, followed 3 h later by a 2-h hyperinsulinemic euglycemic clamp (40 mIU·min−1·m2) to determine insulin sensitivity. Four muscle biopsies were taken on each trial day, at baseline before NAC infusion (BASE), after exercise (EX), after 3-h recovery (REC), and post-insulin clamp (PI). Exercise, ROS, and insulin action on protein phosphorylation were evaluated with immunoblotting. NAC tended to decrease postexercise markers of the ROS/protein carbonylation ratio by −13.5% ( P = 0.08) and increase the GSH/GSSG ratio twofold vs. CON ( P < 0.05). Insulin sensitivity was reduced (−5.9%, P < 0.05) by NAC compared with CON without decreased phosphorylation of Akt or AS160. Whereas p-mTOR was not significantly decreased by NAC after EX or REC, phosphorylation of the downstream protein synthesis target kinase p70S6K was blunted by 48% at PI with NAC compared with CON ( P < 0.05). We conclude that NAC infusion attenuated muscle ROS and postexercise insulin sensitivity independent of Akt signaling. ROS also played a role in normal p70S6K phosphorylation in response to insulin stimulation in human skeletal muscle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy