SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lunine J. I.) "

Sökning: WFRF:(Lunine J. I.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  • Mousis, O., et al. (författare)
  • Scientific rationale for Saturn's in situ exploration
  • 2014
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 29-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
  •  
3.
  • Lammer, H., et al. (författare)
  • Geophysical and Atmospheric Evolution of Habitable Planets
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 45-68
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
  •  
4.
  • Kaltenegger, L., et al. (författare)
  • Stellar Aspects of Habitability-Characterizing Target Stars for Terrestrial Planet-Finding Missions
  • 2010
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 103-112
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability.
  •  
5.
  • Mousis, O., et al. (författare)
  • Key Atmospheric Signatures for Identifying the Source Reservoirs of Volatiles in Uranus and Neptune
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • We investigate the enrichment patterns of several delivery scenarios of the volatiles to the atmospheres of ice giants, having in mind that the only well constrained determination made remotely, namely the carbon abundance measurement, suggests that their envelopes possess highly supersolar metallicities, i.e., close to two orders of magnitude above that of the protosolar nebula. In the framework of the core accretion model, only the delivery of volatiles in solid forms (amorphous ice, clathrates, pure condensates) to these planets can account for the apparent supersolar metallicity of their envelopes. In contrast, because of the inward drift of icy particles through various snowlines, all mechanisms invoking the delivery of volatiles in vapor forms predict subsolar abundances in the envelopes of Uranus and Neptune. Alternatively, even if the disk instability mechanism remains questionable in our solar system, it might be consistent with the supersolar metallicities observed in Uranus and Neptune, assuming the two planets suffered subsequent erosion of their H-He envelopes. The enrichment patterns derived for each delivery scenario considered should be useful to interpret future in situ measurements by atmospheric entry probes.
  •  
6.
  • Rahm, Martin, 1982, et al. (författare)
  • Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113, s. 8121-8126
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini–Huygens mission measurements of the atmosphere and the surface of Saturn’s moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable “natural laboratory” for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan’s atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI’s intermolecular and intramolecular =N–H…N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy