SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luo Xiaodan) "

Sökning: WFRF:(Luo Xiaodan)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Daniel, Quentin, et al. (författare)
  • Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst
  • 2018
  • Ingår i: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435. ; 8:5, s. 4375-4382
  • Tidskriftsartikel (refereegranskat)abstract
    • The mononuclear ruthenium complex [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid, L = N-heterocycles such as 4-picoline) has previously shown promising catalytic efficiency toward water oxidation, both in homogeneous solutions and anchored on electrode surfaces. However, the detailed water oxidation mechanism catalyzed by this type of complex has remained unclear. In order to deepen understanding of this type of catalyst, in the present study, [Ru(pdc)(py)(3)] (py = pyridine) has been synthesized, and the detailed catalytic mechanism has been studied by electrochemistry, UV-vis, NMR, MS, and X-ray crystallography. Interestingly, it was found that once having reached the Ru-IV state, this complex promptly formed a stable ruthenium dimer [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(2)](+). Further investigations suggested that the present dimer, after one pyridine ligand exchange with water to form [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(H2O)](+), was the true active species to catalyze water oxidation in homogeneous solutions.
  •  
2.
  • Li, Hailong, 1976-, et al. (författare)
  • A self-powered smart wave energy converter for sustainable sea
  • 2024
  • Ingår i: Mechanical systems and signal processing. - : Academic Press. - 0888-3270 .- 1096-1216. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-powered smart buoys are widely used in sustainable sea, such as marine environmental monitoring. The article designs a self-powered and self-sensing point-absorber wave energy converter based on the two-arm mechanism. The system consists of the wave energy capture module, the power take-off module, the generator module and the energy storage module. As the core component of the wave energy converter, the power take-off module is mainly composed of a two-arm mechanism, which can convert the oscillation heave motion into unidirectional rotary motion. To evaluate the power generation performance of the system, the kinematic and dynamic models of the wave energy converter with the flywheel are established, and the disengagement and engagement phenomena of the flywheel are analyzed. The effectiveness of the prototype in capturing wave energy is verified through dry experiments in lab and field tests. The dry experiment reveals that the maximum output power of the system is 5.67 W, and the maximum and average mechanical efficiency are 66.63 % and 48.35 %, respectively. Additionally, the field test demonstrates that the peak output power can reach 92 W. Meanwhile, the generated electrical signals can be processed by deep learning algorithms to accurately identify different wave states. This high performance confirms that the proposed wave energy converter can meet its own energy needs by capturing wave energy in the marine environment, while also achieving self-sensing for wave condition monitoring. The system has great potential for promoting the development of intelligent sustainable sea in the future. 
  •  
3.
  • Liang, Jie, et al. (författare)
  • A Crystalline Mesoporous Germanate with 48-Ring Channels for CO2 Separation
  • 2015
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 54:25, s. 7290-7294
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the challenges in materials science has been to prepare crystalline inorganic compounds with mesopores. Although several design strategies have been developed to address the challenge, expansion of pore sizes in inorganic materials is more difficult compared to that for metal-organic frameworks. Herein, we designed a novel mesoporous germanate PKU-17 with 3D 48 x 16 x 16-ring channels by introducing two large building units (Ge-10 and Ge-7 clusters) into the same framework. The key for this design strategy is the selection of 2-propanolamine (MIPA), which serves as the terminal species to promote the crystallization of Ge-7 clusters. Moreover, it is responsible for the coexistence of Ge-10 and Ge-7 clusters. To our knowledge, the discovery of PKU-17 sets a new record in pore sizes among germanates. It is also the first germanate that exhibits a good selectivity toward CO2 over N-2 and CH4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy