SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luo Yiqi) "

Sökning: WFRF:(Luo Yiqi)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlström, Anders, et al. (författare)
  • Importance of vegetation dynamics for future terrestrial carbon cycling
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
  •  
2.
  • Chen, Yiqi, et al. (författare)
  • On Strong Secrecy for Multiple Access Channel with States and causal CSI
  • 2023
  • Ingår i: 2023 IEEE International Symposium on Information Theory, ISIT 2023. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 2744-2749
  • Konferensbidrag (refereegranskat)abstract
    • Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. An inner bound of the capacity is provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are studied. The first one uses backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy reproduction of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.
  •  
3.
  • De Kauwe, Martin G., et al. (författare)
  • Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:6, s. 1759-1779
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process-based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free-air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model-to-model and model-to-observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 215%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel =approximately 28%+/- 10%) compared to the observations (=approximately 30%+/- 13%) at the well-coupled coniferous site (Duke), but poor (intermodel =approximately 24%+/- 6%; observations =approximately 38%+/- 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.
  •  
4.
  • Holm, Jennifer A., et al. (författare)
  • Exploring the impacts of unprecedented climate extremes on forest ecosystems : Hypotheses to guide modeling and experimental studies
  • 2023
  • Ingår i: Biogeosciences. - 1726-4170. ; 20:11, s. 2117-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic extreme events are expected to occur more frequently in the future, increasing the likelihood of unprecedented climate extremes (UCEs) or record-breaking events. UCEs, such as extreme heatwaves and droughts, substantially affect ecosystem stability and carbon cycling by increasing plant mortality and delaying ecosystem recovery. Quantitative knowledge of such effects is limited due to the paucity of experiments focusing on extreme climatic events beyond the range of historical experience. Here, we present a road map of how dynamic vegetation demographic models (VDMs) can be used to investigate hypotheses surrounding ecosystem responses to one type of UCE: unprecedented droughts. As a result of nonlinear ecosystem responses to UCEs that are qualitatively different from responses to milder extremes, we consider both biomass loss and recovery rates over time by reporting a time-integrated carbon loss as a result of UCE, relative to the absence of drought. Additionally, we explore how unprecedented droughts in combination with increasing atmospheric CO2 and/or temperature may affect ecosystem stability and carbon cycling. We explored these questions using simulations of pre-drought and post-drought conditions at well-studied forest sites using well-tested models (ED2 and LPJ-GUESS). The severity and patterns of biomass losses differed substantially between models. For example, biomass loss could be sensitive to either drought duration or drought intensity depending on the model approach. This is due to the models having different, but also plausible, representations of processes and interactions, highlighting the complicated variability of UCE impacts that still need to be narrowed down in models. Elevated atmospheric CO2 concentrations (eCO2) alone did not completely buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight the consequences of differences in process formulations and uncertainties in models, most notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes, in projecting potential ecosystem responses to UCEs. We provide a summary of the current state and role of many model processes that give way to different underlying hypotheses of plant responses to UCEs, reflecting knowledge gaps which in future studies could be tested with targeted field experiments and an iterative modeling-experimental conceptual framework.
  •  
5.
  • Huang, Kun, et al. (författare)
  • Enhanced peak growth of global vegetation and its key mechanisms
  • 2018
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:12, s. 1897-1905
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPPmax and NDVImax). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVImax variation is evenly explained by expanding croplands (21%), rising CO2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPPmax to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.
  •  
6.
  • Kirschbaum, Miko U.F., et al. (författare)
  • Is tree planting an effective strategy for climate change mitigation?
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier B.V.. - 0048-9697 .- 1879-1026. ; 909
  • Tidskriftsartikel (refereegranskat)abstract
    • The world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO2 by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees. First, one needs to consider the potential reversibility of C sequestration in trees through either harvesting or tree death from natural factors. If carbon storage is only temporary, future temperatures will actually be higher than without tree plantings, but cumulative warming will be reduced, contributing both positively and negatively to future climate-change impacts. Alternatively, forests could be used for bioenergy or wood products to replace fossil-fuel use which would obviate the need to consider the possible reversibility of any benefits. Forests also affect the Earth's energy balance through either absorbing or reflecting incoming solar radiation. As forests generally absorb more incoming radiation than bare ground or grasslands, this constitutes an important warming effect that substantially reduces the benefit of C storage, especially in snow-covered regions. Forests also affect other local ecosystem services, such as conserving biodiversity, modifying water and nutrient cycles, and preventing erosion that could be either beneficial or harmful depending on specific circumstances. Considering all these factors, tree plantings may be beneficial or detrimental for mitigating climate-change impacts, but the range of possibilities makes generalisations difficult. Their net benefit depends on many factors that differ between specific circumstances. One can, therefore, neither uncritically endorse tree planting everywhere, nor condemn it as counter-productive. Our aim is to provide key information to enable appropriate assessments to be made under specific circumstances. We conclude our discussion by providing a step-by-step guide for assessing the merit of tree plantings under specific circumstances.
  •  
7.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
8.
  • Li, Zhao, et al. (författare)
  • Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern lands (>50° N) since 1960s. However, the correlation between vegetation growth, temperature and seasonal amplitude of atmospheric CO2 concentration have become elusive with the slowed increasing trend of vegetation growth and weakened temperature control on CO2 uptake since late 1990s. Here, based on in situ atmospheric CO2 concentration records from the Barrow observatory site, we found a slowdown in the increasing trend of the atmospheric CO2 amplitude from 1990s to mid-2000s. This phenomenon was associated with the paused decrease in the minimum CO2 concentration ([CO2]min), which was significantly correlated with the slowdown of vegetation greening and growing-season length extension. We then showed that both the vegetation greenness and growing-season length were positively correlated with spring but not autumn temperature over the northern lands. Furthermore, such asymmetric dependences of vegetation growth upon spring and autumn temperature cannot be captured by the state-of-art terrestrial biosphere models. These findings indicate that the responses of vegetation growth to spring and autumn warming are asymmetric, and highlight the need of improving autumn phenology in the models for predicting seasonal cycle of atmospheric CO2 concentration.
  •  
9.
  • Luo, Yiqi, et al. (författare)
  • Matrix Approach to Land Carbon Cycle Modeling
  • 2022
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 14:7
  • Forskningsöversikt (refereegranskat)abstract
    • Land ecosystems contribute to climate change mitigation by taking up approximately 30% of anthropogenically emitted carbon. However, estimates of the amount and distribution of carbon uptake across the world's ecosystems or biomes display great uncertainty. The latter hinders a full understanding of the mechanisms and drivers of land carbon uptake, and predictions of the future fate of the land carbon sink. The latter is needed as evidence to inform climate mitigation strategies such as afforestation schemes. To advance land carbon cycle modeling, we have developed a matrix approach. Land carbon cycle models use carbon balance equations to represent carbon exchanges among pools. Our approach organizes this set of equations into a single matrix equation without altering any processes of the original model. The matrix equation enables the development of a theoretical framework for understanding the general, transient behavior of the land carbon cycle. While carbon input and residence time are used to quantify carbon storage capacity at steady state, a third quantity, carbon storage potential, integrates fluxes with time to define dynamic disequilibrium of the carbon cycle under global change. The matrix approach can help address critical contemporary issues in modeling, including pinpointing sources of model uncertainty and accelerating spin-up of land carbon cycle models by tens of times. The accelerated spin-up liberates models from the computational burden that hinders comprehensive parameter sensitivity analysis and assimilation of observational data to improve model accuracy. Such computational efficiency offered by the matrix approach enables substantial improvement of model predictions using ever-increasing data availability. Overall, the matrix approach offers a step change forward for understanding and modeling the land carbon cycle.
  •  
10.
  • Luo, Yiqi, et al. (författare)
  • Toward more realistic projections of soil carbon dynamics by Earth system models
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 30:1, s. 40-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
  •  
11.
  • Luo, Yiqi, et al. (författare)
  • Transient dynamics of terrestrial carbon storage : Mathematical foundation and its applications
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:1, s. 145-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux-and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.
  •  
12.
  • McGuire, A. David, et al. (författare)
  • Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:7, s. 1015-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
  •  
13.
  • Niu, Shuli, et al. (författare)
  • Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
  • 2012
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 194:3, s. 775-783
  • Tidskriftsartikel (refereegranskat)abstract
    • • It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
  •  
14.
  • Piao, Shilong, et al. (författare)
  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 19:7, s. 2117-2132
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung etal. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein etal. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 +/- 15Pg Cyr-1) than JU11 (118 +/- 6Pg Cyr-1). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5-20%) per 100ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 +/- 0.8Pg Cyr-1 is remarkably close to the mean value of RLS (2.1 +/- 1.2 Pg Cyr-1). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980-2009. Both model-to-model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is -3.0 +/- 1.5Pg Cyr-1 degrees C-1, within the uncertainty of what derived from RLS (-3.9 +/- 1.1Pg Cyr-1 degrees C-1). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation-based GPP and NBP can be fortuitous. Carbon-nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.
  •  
15.
  • Tao, Feng, et al. (författare)
  • Convergence in simulating global soil organic carbon by structurally different models after data assimilation
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first-order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high-quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics-function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.
  •  
16.
  • Tao, Feng, et al. (författare)
  • Microbial carbon use efficiency promotes global soil carbon storage
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 981-985
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils store more carbon than other terrestrial ecosystems. How soil organic carbon (SOC) forms and persists remains uncertain, which makes it challenging to understand how it will respond to climatic change. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.
  •  
17.
  • van Gestel, Natasja, et al. (författare)
  • Predicting soil carbon loss with warming
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 554:E4-5
  • Tidskriftsartikel (refereegranskat)
  •  
18.
  • Walker, Anthony P., et al. (författare)
  • Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration
  • 2014
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 119:5, s. 937-964
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-air CO2 enrichment (FACE) experiments provide a remarkable wealth of data which can be used to evaluate and improve terrestrial ecosystem models (TEMs). In the FACE model-data synthesis project, 11 TEMs were applied to two decadelong FACE experiments in temperate forests of the southeastern U.S.the evergreen Duke Forest and the deciduous Oak Ridge Forest. In this baseline paper, we demonstrate our approach to model-data synthesis by evaluating the models' ability to reproduce observed net primary productivity (NPP), transpiration, and leaf area index (LAI) in ambient CO2 treatments. Model outputs were compared against observations using a range of goodness-of-fit statistics. Many models simulated annual NPP and transpiration within observed uncertainty. We demonstrate, however, that high goodness-of-fit values do not necessarily indicate a successful model, because simulation accuracy may be achieved through compensating biases in component variables. For example, transpiration accuracy was sometimes achieved with compensating biases in leaf area index and transpiration per unit leaf area. Our approach to model-data synthesis therefore goes beyond goodness-of-fit to investigate the success of alternative representations of component processes. Here we demonstrate this approach by comparing competing model hypotheses determining peak LAI. Of three alternative hypotheses(1) optimization to maximize carbon export, (2) increasing specific leaf area with canopy depth, and (3) the pipe modelthe pipe model produced peak LAI closest to the observations. This example illustrates how data sets from intensive field experiments such as FACE can be used to reduce model uncertainty despite compensating biases by evaluating individual model assumptions.
  •  
19.
  • Wu, Zhendong, et al. (författare)
  • Approaching the potential of model-data comparisons of global land carbon storage
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon storage dynamics in vegetation and soil are determined by the balance of carbon influx and turnover. Estimates of these opposing fluxes differ markedly among different empirical datasets and models leading to uncertainty and divergent trends. To trace the origin of such discrepancies through time and across major biomes and climatic regions, we used a model-data fusion framework. The framework emulates carbon cycling and its component processes in a global dynamic ecosystem model, LPJ-GUESS, and preserves the model-simulated pools and fluxes in space and time. Thus, it allows us to replace simulated carbon influx and turnover with estimates derived from empirical data, bringing together the strength of the model in representing processes, with the richness of observational data informing the estimations. The resulting vegetation and soil carbon storage and global land carbon fluxes were compared to independent empirical datasets. Results show model-data agreement comparable to, or even better than, the agreement between independent empirical datasets. This suggests that only marginal improvement in land carbon cycle simulations can be gained from comparisons of models with current-generation datasets on vegetation and soil carbon. Consequently, we recommend that model skill should be assessed relative to reference data uncertainty in future model evaluation studies.
  •  
20.
  • Xia, Jianyang, et al. (författare)
  • Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:2, s. 430-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246±6gCm-2yr-1), most models produced higher NPP (309±12gCm-2yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800gCm-2yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
  •  
21.
  • Yuan, Wenping, et al. (författare)
  • Redefinition and global estimation of basal ecosystem respiration rate
  • 2011
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from similar to 3 degrees S to similar to 70 degrees N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr (-1), with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.
  •  
22.
  • Zaehle, Soenke, et al. (författare)
  • Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies
  • 2014
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 202:3, s. 803-822
  • Tidskriftsartikel (refereegranskat)abstract
    • We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO(2)) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO(2) and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO(2) effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO(2), given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.
  •  
23.
  • Zhou, Sha, et al. (författare)
  • Sources of uncertainty in modeled land carbon storage within and across three MIPs : Diagnosis with three new techniques
  • 2018
  • Ingår i: Journal of Climate. - 0894-8755. ; 31:7, s. 2833-2851
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial carbon cycle models have incorporated increasingly more processes as a means to achieve more-realistic representations of ecosystem carbon cycling. Despite this, there are large across-model variations in the simulation and projection of carbon cycling. Several model intercomparison projects (MIPs), for example, the fifth phase of the Coupled Model Intercomparison Project (CMIP5) (historical simulations), Trends in Net Land-Atmosphere Carbon Exchange (TRENDY), and Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), have sought to understand intermodel differences. In this study, the authors developed a suite of new techniques to conduct post-MIP analysis to gain insights into uncertainty sources across 25 models in the three MIPs. First, terrestrial carbon storage dynamics were characterized by a three-dimensional (3D) model output space with coordinates of carbon residence time, net primary productivity (NPP), and carbon storage potential. The latter represents the potential of an ecosystem to lose or gain carbon. This space can be used to measure how and why model output differs. Models with a nitrogen cycle generally exhibit lower annual NPP in comparison with other models, and mostly negative carbon storage potential. Second, a transient traceability framework was used to decompose any given carbon cycle model into traceable components and identify the sources of model differences. The carbon residence time (or NPP) was traced to baseline carbon residence time (or baseline NPP related to the maximum carbon input), environmental scalars, and climate forcing. Third, by applying a variance decomposition method, the authors show that the intermodel differences in carbon storage can be mainly attributed to the baseline carbon residence time and baseline NPP (>90% in the three MIPs). The three techniques developed in this study offer a novel approach to gain more insight from existing MIPs and can point out directions for future MIPs. Since this study is conducted at the global scale for an overview on intermodel differences, future studies should focus more on regional analysis to identify the sources of uncertainties and improve models at the specified mechanism level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
Författare/redaktör
Luo, Yiqi (22)
Ahlström, Anders (9)
Wang, Ying Ping (9)
Xia, Jianyang (8)
Smith, Benjamin (7)
Ciais, Philippe (6)
visa fler...
McGuire, A. David (4)
Zaehle, Soenke (4)
Huang, Yuanyuan (3)
Hickler, Thomas (3)
Norby, Richard J. (3)
Rinke, Annette (3)
Tao, Feng (3)
Koven, Charles (3)
Peng, Shushi (3)
Ji, Duoying (3)
Chen, Guangsheng (3)
Chen, Jiquan (3)
Oren, Ram (3)
Krinner, Gerhard (3)
Schuur, Edward A. G. (2)
Schaefer, Kevin (2)
Huntingford, Chris (2)
Manzoni, Stefano, 19 ... (2)
Montagnani, Leonardo (2)
Lindroth, Anders (2)
Arneth, Almut (2)
Sitch, Stephen (2)
Zhang, Wenxin (2)
Miller, Paul A. (2)
Carvalhais, Nuno (2)
Lawrence, David M. (2)
Chen, Xiaodong (2)
Gouttevin, Isabelle (2)
Burke, Eleanor (2)
Dukes, Jeffrey S (2)
Niu, Shuli (2)
Reich, Peter B (2)
Huang, Kun (2)
Desai, Ankur R. (2)
Ahrens, Bernhard (2)
Cescatti, Alessandro (2)
Iversen, Colleen M. (2)
Delire, Christine (2)
Hajima, Tomohiro (2)
Gielen, Bert (2)
Zhou, Tao (2)
Jain, Atul (2)
Fisher, Joshua B. (2)
Houlton, Benjamin Z. (2)
visa färre...
Lärosäte
Lunds universitet (17)
Sveriges Lantbruksuniversitet (5)
Stockholms universitet (4)
Kungliga Tekniska Högskolan (2)
Göteborgs universitet (1)
Högskolan i Gävle (1)
visa fler...
Jönköping University (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Lantbruksvetenskap (5)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy