SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mäkinen Taija) "

Sökning: WFRF:(Mäkinen Taija)

  • Resultat 1-50 av 113
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achen, M G, et al. (författare)
  • Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3.
  • 2000
  • Ingår i: European Journal of Biochemistry. - 0014-2956 .- 1432-1033. ; 267:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor-D (VEGF-D), the most recently discovered mammalian member of the VEGF family, is an angiogenic protein that activates VEGF receptor-2 (VEGFR-2/Flk1/KDR) and VEGFR-3 (Flt4). These receptor tyrosine kinases, localized on vascular and lymphatic endothelial cells, signal for angiogenesis and lymphangiogenesis. VEGF-D consists of a central receptor-binding VEGF homology domain (VHD) and N-terminal and C-terminal propeptides that are cleaved from the VHD to generate a mature, bioactive form consisting of dimers of the VHD. Here we report characterization of mAbs raised to the VHD of human VEGF-D in order to generate VEGF-D antagonists. The mAbs bind the fully processed VHD with high affinity and also bind unprocessed VEGF-D. We demonstrate, using bioassays for the binding and cross-linking of VEGFR-2 and VEGFR-3 and biosensor analysis with immobilized receptors, that one of the mAbs, designated VD1, is able to compete potently with mature VEGF-D for binding to both VEGFR-2 and VEGFR-3 for binding to mature VEGF-D. This indicates that the binding epitopes on VEGF-D for these two receptors may be in close proximity. Furthermore, VD1 blocks the mitogenic response of human microvascular endothelial cells to VEGF-D. The anti-(VEGF-D) mAbs raised to the bioactive region of this growth factor will be powerful tools for analysis of the biological functions of VEGF-D.
  •  
2.
  • Achen, M G, et al. (författare)
  • Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).
  • 1998
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified a member of the VEGF family by computer-based homology searching and have designated it VEGF-D. VEGF-D is most closely related to VEGF-C by virtue of the presence of N- and C-terminal extensions that are not found in other VEGF family members. In adult human tissues, VEGF-D mRNA is most abundant in heart, lung, skeletal muscle, colon, and small intestine. Analyses of VEGF-D receptor specificity revealed that VEGF-D is a ligand for both VEGF receptors (VEGFRs) VEGFR-2 (Flk1) and VEGFR-3 (Flt4) and can activate these receptors. However. VEGF-D does not bind to VEGFR-1. Expression of a truncated derivative of VEGF-D demonstrated that the receptor-binding capacities reside in the portion of the molecule that is most closely related in primary structure to other VEGF family members and that corresponds to the mature form of VEGF-C. In addition, VEGF-D is a mitogen for endothelial cells. The structural and functional similarities between VEGF-D and VEGF-C define a subfamily of the VEGFs.
  •  
3.
  • Alvarez, Alberto, et al. (författare)
  • Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreER(T2) lines
  • 2020
  • Ingår i: Transgenic research. - : Springer Nature. - 0962-8819 .- 1573-9368. ; 29:1, s. 53-68
  • Tidskriftsartikel (refereegranskat)abstract
    • The CreER(T2)/loxP system is widely used to induce conditional gene deletion in mice. One of the main advantages of the system is that Cre-mediated recombination can be controlled in time through Tamoxifen administration. This has allowed researchers to study the function of embryonic lethal genes at later developmental timepoints. In addition, CreER(T2) mouse lines are commonly used in combination with reporter genes for lineage tracing and mosaic analysis. In order for these experiments to be reliable, it is crucial that the cell labeling approach only marks the desired cell population and their progeny, as unfaithful expression of reporter genes in other cell types or even unintended labeling of the correct cell population at an undesired time point could lead to wrong conclusions. Here we report that all CreER(T2) mouse lines that we have studied exhibit a certain degree of Tamoxifen-independent, basal, Cre activity. Using Ai14 and Ai3, two commonly used fluorescent reporter genes, we show that those basal Cre activity levels are sufficient to label a significant amount of cells in a variety of tissues during embryogenesis, postnatal development and adulthood. This unintended labelling of cells imposes a serious problem for lineage tracing and mosaic analysis experiments. Importantly, however, we find that reporter constructs differ greatly in their susceptibility to basal CreER(T2) activity. While Ai14 and Ai3 easily recombine under basal CreER(T2) activity levels, mTmG and R26R-EYFP rarely become activated under these conditions and are therefore better suited for cell tracking experiments.
  •  
4.
  • Álvarez-Aznar, Alberto (författare)
  • Cdc42, orchestrator of vascular morphogenesis in the retina
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cdc42 is a small GTPase that controls many cellular functions related to cytoskeletal dynamics, such as migration, polarity, and proliferation. Despite what we know of Cdc42 in other cell types, not much research has been done on the vasculature. This thesis describes the consequences of Cdc42 deletion in two vascular cell types—endothelial and mural cells—during developmental angiogenesis.In paper I, we demonstrate through a combination of in vitro, in silico, and in vivo assays, that Cdc42-deficient endothelial cells migrate less and fail to distribute normally in areas of naturally occurring high proliferation during angiogenesis, causing vascular malformations with enlarged lumens. In addition, these cells present impaired filopodia formation, a disadvantage for the tip cell position, disturbed axial polarity and altered junctions.With an in vivo approach, in paper III we demonstrate that the deletion of Cdc42 in mural cells has consequences on the morphogenesis of the retinal vasculature. Cdc42-deficient mural cells proliferate less and cannot keep up with the nascent angiogenic vasculature, which results in a complete pericyte loss at the sprouting front. Furthermore, we describe that mural cells contribute to the remodeling of the vasculature, also after the initial phases of angiogenesis.The CreERT2 system is frequently used for conditional gene deletion and lineage tracing. Tamoxifen administration allows spatiotemporally controlled recombination of fluorescent reporters, and tracing of the labeled cells. However, in the course of our studies, we observed tamoxifen-independent recombination. In paper II, we describe this phenomenon in detail, using different combinations of CreERT2 and fluorescent reporter lines. We conclude that tamoxifen-independent recombination is a widespread occurrence, and that fluorescent reporter lines present varying levels of susceptibility to it.In summary, the work presented here sheds new light on the role of Cdc42 in the vasculature. Additionally, this thesis describes in detail an important feature of CreERT2 and reporter lines that should be taken into account when performing lineage-tracing experiments.
  •  
5.
  • Arasa, Jorge, et al. (författare)
  • Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation
  • 2021
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 218:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendritic cell (DC) migration to draining lymph nodes (dLNs) is a slow process that is believed to begin with DCs approaching and entering into afferent lymphatic capillaries. From capillaries, DCs slowly crawl into lymphatic collectors, where lymph flow induced by collector contraction supports DC detachment and thereafter rapid, passive transport to dLNs. Performing a transcriptomics analysis of dermal endothelial cells, we found that inflammation induces the degradation of the basement membrane (BM) surrounding lymphatic collectors and preferential up-regulation of the DC trafficking molecule VCAM-1 in collectors. In crawl-in experiments performed in ear skin explants, DCs entered collectors in a CCR7- and beta 1 integrin-dependent manner. In vivo, loss of beta 1-integrins in DCs or of VCAM-1 in lymphatic collectors had the greatest impact on DC migration to dLNs at early time points when migration kinetics favor the accumulation of rapidly migrating collector DCs rather than slower capillary DCs. Taken together, our findings identify collector entry as a critical mechanism enabling rapid DC migration to dLNs in inflammation.
  •  
6.
  • Aspelund, Aleksanteri, et al. (författare)
  • Lymphatic System in Cardiovascular Medicine
  • 2016
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 118:3, s. 515-530
  • Forskningsöversikt (refereegranskat)abstract
    • The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.
  •  
7.
  • Aspelund, Aleksanteri, et al. (författare)
  • The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel
  • 2014
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 124:9, s. 3975-3986
  • Tidskriftsartikel (refereegranskat)abstract
    • In glaucoma, aqueous outflow into the Schlemm's canal (SC) is obstructed. Despite striking structural and functional similarities with the lymphatic vascular, system, it is unknown whether the SC is a blood or lymphatic vessel. Here, we demonstrated the expression of lymphatic endothelial cell markers by the SC in murine and zebrafish models as well as in human eye tissue. The initial stages of SC development involved induction of the transcription factor PROX1 and the lymphangiogenic receptor tyrosine kinase VEGFR-3 in venous endothelial cells in postnatal mice. Using gene deletion and function-blocking antibodies in mice, we determined that the lymphangiogenic growth factor VEGF-C and its receptor, VEGFR-3, are essential for SC development. Delivery of VEGF-C into the adult eye resulted in sprouting, proliferation, and growth of SC endothelial cells, whereas VEGF-A obliterated the aqueous outflow system. Furthermore, a single injection of recombinant VEGF-C induced SC growth and was associated with trend toward a sustained decrease in intraocular pressure in adult mice. These results reveal the evolutionary conservation of the lymphatic-like phenotype of the SC, implicate VEGF-C and VEGFR-3 as critical regulators of SC lymphangiogenesis, and provide a basis for further studies on therapeutic manipulation of the SC with VEGF-C in glaucoma treatment.
  •  
8.
  •  
9.
  • Bazigou, Eleni, et al. (författare)
  • Flow control in our vessels : vascular valves make sure there is no way back.
  • 2013
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 70:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficient transport of blood and lymph relies on competent intraluminal valves that ensure unidirectional fluid flow through the vessels. In the lymphatic vessels, lack of luminal valves causes reflux of lymph and can lead to lymphedema, while dysfunction of venous valves is associated with venous hypertension, varicose veins, and thrombosis that can lead to edema and ulcerations. Despite their clinical importance, the mechanisms that regulate valve formation are poorly understood and have only recently begun to be characterized. Here, we discuss new findings regarding the development of venous and lymphatic valves that indicate the involvement of common molecular mechanisms in regulating valve formation in different vascular beds.
  •  
10.
  • Bazigou, Eleni, et al. (författare)
  • Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice.
  • 2011
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 121:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic venous disease and venous hypertension are common consequences of valve insufficiency, yet the molecular mechanisms regulating the formation and maintenance of venous valves have not been studied. Here, we provide what we believe to be the first description of venous valve morphogenesis and identify signaling pathways required for the process. The initial stages of valve development were found to involve induction of ephrin-B2, a key marker of arterial identity, by venous endothelial cells. Intriguingly, developing and mature venous valves also expressed a repertoire of proteins, including prospero-related homeobox 1 (Prox1), Vegfr3, and integrin-α9, previously characterized as specific and critical regulators of lymphangiogenesis. Using global and venous valve-selective knockout mice, we further demonstrate the requirement of ephrin-B2 and integrin-α9 signaling for the development and maintenance of venous valves. Our findings therefore identified molecular regulators of venous valve development and maintenance and highlighted the involvement of common morphogenetic processes and signaling pathways in controlling valve formation in veins and lymphatic vessels. Unexpectedly, we found that venous valve endothelial cells closely resemble lymphatic (valve) endothelia at the molecular level, suggesting plasticity in the ability of a terminally differentiated endothelial cell to take on a different phenotypic identity.
  •  
11.
  • Bazigou, Eleni, et al. (författare)
  • Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis.
  • 2009
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysfunction of lymphatic valves underlies human lymphedema, yet the process of valve morphogenesis is poorly understood. Here, we show that during embryogenesis, lymphatic valve leaflet formation is initiated by upregulation of integrin-alpha9 expression and deposition of its ligand fibronectin-EIIIA (FN-EIIIA) in the extracellular matrix. Endothelial cell-specific deletion of Itga9 (encoding integrin-alpha9) in mouse embryos results in the development of rudimentary valve leaflets characterized by disorganized FN matrix, short cusps, and retrograde lymphatic flow. Similar morphological and functional defects are observed in mice lacking the EIIIA domain of FN. Mechanistically, we demonstrate that in primary human lymphatic endothelial cells, the integrin-alpha9-EIIIA interaction directly regulates FN fibril assembly, which is essential for the formation of the extracellular matrix core of valve leaflets. Our findings reveal an important role for integrin-alpha9 signaling during lymphatic valve morphogenesis and implicate it as a candidate gene for primary lymphedema caused by valve defects.
  •  
12.
  • Betsholtz, Christer, et al. (författare)
  • Cellular Origin of Sporadic CCMs
  • 2022
  • Ingår i: New England Journal of Medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 386:13, s. 1291-1291
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
13.
  • Bianchi, Roberta, et al. (författare)
  • A Transgenic Prox1-Cre-tdTomato Reporter Mouse for Lymphatic Vessel Research
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The lymphatic vascular system plays an active role in immune cell trafficking, inflammation and cancer spread. In order to provide an in vivo tool to improve our understanding of lymphatic vessel function in physiological and pathological conditions, we generated and characterized a tdTomato reporter mouse and crossed it with a mouse line expressing Cre recombinase under the control of the lymphatic specific promoter Prox1 in an inducible fashion. We found that the tdTomato fluorescent signal recapitulates the expression pattern of Prox1 in lymphatic vessels and other known Prox1-expressing organs. Importantly, tdTomato co-localized with the lymphatic markers Prox1, LYVE-1 and podoplanin as assessed by whole-mount immunofluorescence and FACS analysis. The tdTomato reporter was brighter than a previously established red fluorescent reporter line. We confirmed the applicability of this animal model to intravital microscopy of dendritic cell migration into and within lymphatic vessels, and to fluorescence-activated single cell analysis of lymphatic endothelial cells. Additionally, we were able to describe the early morphological changes of the lymphatic vasculature upon induction of skin inflammation. The Prox1-Cre-tdTomato reporter mouse thus shows great potential for lymphatic research.
  •  
14.
  • Calvo, Charles-Félix, et al. (författare)
  • Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis.
  • 2011
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.
  •  
15.
  • Chen, Chiu-Yu, et al. (författare)
  • Blood flow reprograms lymphatic vessels to blood vessels.
  • 2012
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 122:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.
  •  
16.
  • Chen, Di, et al. (författare)
  • Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells
  • 2022
  • Ingår i: JCI Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss-of-function mutations in RASA1 or EPHB4 genes, which encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4). However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell-specific (EC-specific) disruption of Ephb4 in mice resulted in accumulation of collagen IV in the EC ER, leading to EC apoptotic death and defective developmental, neonatal, and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice could be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4-mutant mice that expressed a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity showed normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications for possible means of treatment of this disease.
  •  
17.
  • Cho, Hyunsoo, et al. (författare)
  • YAP and TAZ Negatively Regulate Prox1 During Developmental and Pathologic Lymphangiogenesis
  • 2019
  • Ingår i: Circulation Research. - : Lippincott Williams & Wilkins. - 0009-7330 .- 1524-4571. ; 124:2, s. 225-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: The Hippo pathway governs cellular differentiation, morphogenesis, and homeostasis, but how it regulates these processes in lymphatic vessels is unknown. Objective: We aimed to reveal the role of the final effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), in lymphatic endothelial cell (LEC) differentiation, morphogenesis, and homeostasis. Methods and Results: During mouse embryonic development, LEC-specific depletion of Yap/Taz disturbed both plexus patterning and valve initiation with upregulated Prox1 (prospero homeobox 1). Conversely, LEC-specific YAP/TAZ hyperactivation impaired lymphatic specification and restricted lymphatic sprouting with profoundly downregulated Prox1. Notably, lymphatic YAP/TAZ depletion or hyperactivation aggravated or attenuated pathological lymphangiogenesis in mouse cornea. Mechanistically, VEGF (vascular endothelial growth factor)-C activated canonical Hippo signaling pathway in LECs. Indeed, repression of PROX1 transcription by YAP/TAZ hyperactivation was mediated by recruitment of NuRD (nucleosome remodeling and histone deacetylase) complex and endogenous binding activity of TEAD (TEA domain family members) to the PROX1 promoter. Furthermore, YAP/TAZ hyperactivation enhanced MYC signaling and inhibited CDKN1C, leading to cell cycle dysregulation and aberrant proliferation. Conclusions: We find that YAP and TAZ play promoting roles in remodeling lymphatic plexus patterning and postnatal lymphatic valve maintenance by negatively regulating Prox1 expression. We further show that YAP and TAZ act as plastic regulators of lymphatic identity and define the Hippo signaling-mediated PROX1 transcriptional programing as a novel dynamic checkpoint underlying LEC plasticity and pathophysiology.
  •  
18.
  •  
19.
  • Daubel, Nina (författare)
  • Lymphatic Vascular Morphogenesis : From Progenitors to Functional Vessels
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The lymphatic vasculature is an important part of the circulatory system and crucial for normal functioning and maintenance of tissues. Yet, our understanding of the processes underlying lymphatic development and homeostasis are surprisingly limited. Recent studies have uncovered a heterogeneous origin of lymphatic endothelium within different organs as well as different mechanisms of vessel formation. The mesentery is a fold of peritoneum that attaches the intestines to the abdominal wall and harbours nerves, blood and lymphatic vessels which supply the intestines. Here, the lymphatic vasculature forms through a process termed lymphvasculogenesis, during which non-venous derived lymphatic endothelial cell (LEC) progenitors assemble into vessels. Parallel to this process, the mesenteric blood vasculature undergoes extensive remodelling. In paper II we show that this is accompanied by a transient extravasation of red blood cells (RBCs). Engulfment of RBCs by developing lymphatic vessels indicate a novel role of lymphatics in clearance of extravasated RBCs. In paper III we further analyse early LEC progenitors in the mesentery and show that they exhibit unique characteristics including membrane blebbing that may facilitate LEC migration during lymphvasculogenic vessel formation. The primitive lymphatic plexus further develops into mature vessels with blind ended, highly specialized segments termed lymphatic capillaries. Individual capillary LECs possess a characteristic oak leaf like shape and discontinuous button like junctions. In paper IV we propose a new model of cell shape regulation in lymphatic capillaries that is based on the interplay of the cytoskeleton and a unique organization of cell-cell junctions. We further report that acquisition of oak leaf shape precedes junctional specification, and is not a mere result of button junction formation in dermal lymphatics. CreERT2 mouse lines are used across many fields of biological research, including the here presented studies, because they allow for targeted gene deletion upon inducible genetic recombination. In paper I we report that, unexpectedly, several commonly used CreERT2 mouse lines exhibit a weak baseline Cre activity leading to induction-independent recombination. This has important implications for the interpretation of results from Cre/loxP experiments, especially when performing lineage tracing.Focusing on different aspects of lymphatic vascular biology, this thesis work reveals yet undescribed mechanisms by which LECs form new vessels, contribute to tissue integrity during vascular remodelling and maintain mature lymphatic vessel integrity through a unique interplay of cell shape and junctional organization.
  •  
20.
  •  
21.
  • Dixelius, Johan, et al. (författare)
  • Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites
  • 2003
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 278, s. 40973-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factors (VEGFs) regulate the development and growth of the blood and lymphatic vascular systems. Of the three VEGF receptors (VEGFR), VEGFR-1 and -2 are expressed on blood vessels; VEGFR-2 is found also on lymphatic vessels. VEGFR-3 is expressed mainly on lymphatic vessels but it is also up-regulated in tumor angiogenesis. Although VEGFR-3 is essential for proper lymphatic development, its signal transduction mechanisms are still incompletely understood. Trans-phosphorylation of activated, dimerized receptor tyrosine kinases is known to be critical for the regulation of kinase activity and for receptor interaction with signal transduction molecules. In this study, we have identified five tyrosyl phosphorylation sites in the VEGFR-3 carboxyl-terminal tail. These sites were used both in VEGFR-3 overexpressed in 293 cells and when the endogenous VEGFR-3 was activated in lymphatic endothelial cells. Interestingly, VEGF-C stimulation of lymphatic endothelial cells also induced the formation of VEGFR-3/VEGFR-2 heterodimers, in which VEGFR-3 was phosphorylated only at three of the five sites while the two most carboxyl-terminal tyrosine residues appeared not to be accessible for the VEGFR-2 kinase. Our data suggest that the carboxyl-terminal tail of VEGFR-3 provides important regulatory tyrosine phosphorylation sites with potential signal transduction capacity and that these sites are differentially used in ligand-induced homo- and heterodimeric receptor complexes.
  •  
22.
  • Eichmann, Anne, et al. (författare)
  • Neural guidance molecules regulate vascular remodeling and vessel navigation.
  • 2005
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 19:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of the embryonic blood vascular and lymphatic systems requires the coordinated action of several transcription factors and growth factors that target endothelial and periendothelial cells. However, according to recent studies, the precise "wiring" of the vascular system does not occur without an ordered series of guidance decisions involving several molecules initially discovered for axons in the nervous system, including ephrins, netrins, slits, and semaphorins. Here, we summarize the new advances in our understanding of the roles of these axonal pathfinding molecules in vascular remodeling and vessel guidance, indicating that neuronal axons and vessel sprouts use common molecular mechanisms for navigation in the body.
  •  
23.
  • Foster, Katie E, et al. (författare)
  • EphB-ephrin-B2 interactions are required for thymus migration during organogenesis.
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Thymus organogenesis requires coordinated interactions of multiple cell types, including neural crest (NC) cells, to orchestrate the formation, separation, and subsequent migration of the developing thymus from the third pharyngeal pouch to the thoracic cavity. The molecular mechanisms driving these processes are unclear; however, NC-derived mesenchyme has been shown to play an important role. Here, we show that, in the absence of ephrin-B2 expression on thymic NC-derived mesenchyme, the thymus remains in the cervical area instead of migrating into the thoracic cavity. Analysis of individual NC-derived thymic mesenchymal cells shows that, in the absence of ephrin-B2, their motility is impaired as a result of defective EphB receptor signaling. This implies a NC-derived cell-specific role of EphB-ephrin-B2 interactions in the collective migration of the thymic rudiment during organogenesis.
  •  
24.
  • Frye, Maike, et al. (författare)
  • EphrinB2-EphB4 signalling provides Rho-mediated homeostatic control of lymphatic endothelial cell junction integrity
  • 2020
  • Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial integrity is vital for homeostasis and adjusted to tissue demands. Although fluid uptake by lymphatic capillaries is a critical attribute of the lymphatic vasculature, the barrier function of collecting lymphatic vessels is also important by ensuring efficient fluid drainage as well as lymph node delivery of antigens and immune cells. Here, we identified the transmembrane ligand EphrinB2 and its receptor EphB4 as critical homeostatic regulators of collecting lymphatic vessel integrity. Conditional gene deletion in mice revealed that EphrinB2/EphB4 signalling is dispensable for blood endothelial barrier function, but required for stabilization of lymphatic endothelial cell (LEC) junctions in different organs of juvenile and adult mice. Studies in primary human LECs further showed that basal EphrinB2/EphB4 signalling controls junctional localisation of the tight junction protein CLDN5 and junction stability via Rac1/Rho-mediated regulation of cytoskeletal contractility. EphrinB2/EphB4 signalling therefore provides a potential therapeutic target to selectively modulate lymphatic vessel permeability and function.
  •  
25.
  • Frye, Maike, et al. (författare)
  • Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue and vessel wall stiffening alters endothelial cell properties and contributes to vascular dysfunction. However, whether extracellular matrix (ECM) stiffness impacts vascular development is not known. Here we show that matrix stiffness controls lymphatic vascular morphogenesis. Atomic force microscopy measurements in mouse embryos reveal that venous lymphatic endothelial cell (LEC) progenitors experience a decrease in substrate stiffness upon migration out of the cardinal vein, which induces a GATA2-dependent transcriptional program required to form the first lymphatic vessels. Transcriptome analysis shows that LECs grown on a soft matrix exhibit increased GATA2 expression and a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including VEGFR3. Analyses of mouse models demonstrate a cell-autonomous function of GATA2 in regulating LEC responsiveness to VEGF-C and in controlling LEC migration and sprouting in vivo. Our study thus uncovers a mechanism by which ECM stiffness dictates the migratory behavior of LECs during early lymphatic development.
  •  
26.
  • Gramolelli, Silvia, et al. (författare)
  • PROX1 is a transcriptional regulator of MMP14
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
  •  
27.
  • Haegerling, Rene, et al. (författare)
  • Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds
  • 2018
  • Ingår i: EMBO Journal. - : WILEY. - 0261-4189 .- 1460-2075. ; 37:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial cells line blood and lymphatic vessels and form intercellular junctions, which preserve vessel structure and integrity. The vascular endothelial cadherin, VE-cadherin, mediates endothelial adhesion and is indispensible for blood vessel development and permeability regulation. However, its requirement for lymphatic vessels has not been addressed. During development, VE-cadherin deletion in lymphatic endothelial cells resulted in abortive lymphangiogenesis, edema, and prenatal death. Unexpectedly, inducible postnatal or adult deletion elicited vessel bed-specific responses. Mature dermal lymph vessels resisted VE-cadherin loss and maintained button junctions, which was associated with an upregulation of junctional molecules. Very different, mesenteric lymphatic collectors deteriorated and formed a strongly hyperplastic layer of lymphatic endothelial cells on the mesothelium. This massive hyperproliferation may have been favored by high mesenteric VEGF-C expression and was associated with VEGFR-3 phosphorylation and upregulation of the transcriptional activator TAZ. Finally, intestinal lacteals fragmented into cysts or became highly distended possibly as a consequence of the mesenteric defects. Taken together, we demonstrate here the importance of VE-cadherin for lymphatic vessel development and maintenance, which is however remarkably vessel bed-specific.
  •  
28.
  • Haiko, Paula, et al. (författare)
  • Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos.
  • 2008
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 28:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphatic vessels play an important role in the regulation of tissue fluid balance, immune responses, and fat adsorption and are involved in diseases including lymphedema and tumor metastasis. Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR-3) is necessary for development of the blood vasculature during early embryogenesis, but later, VEGFR-3 expression becomes restricted to the lymphatic vasculature. We analyzed mice deficient in both of the known VEGFR-3 ligands, VEGF-C and VEGF-D. Unlike the Vegfr3(-/-) embryos, the Vegfc(-/-); Vegfd(-/-) embryos displayed normal blood vasculature after embryonic day 9.5. Deletion of Vegfr3 in the epiblast, using keratin 19 (K19) Cre, resulted in a phenotype identical to that of the Vegfr3(-/-) embryos, suggesting that this phenotype is due to defects in the embryo proper and not in placental development. Interestingly, the Vegfr3(neo) hypomorphic mutant mice carrying the neomycin cassette between exons 1 and 2 showed defective lymphatic development. Overexpression of human or mouse VEGF-D in the skin, under the K14 promoter, rescued the lymphatic hypoplasia of the Vegfc(+/-) mice in the K14-VEGF-D; Vegfc(+/-) compound mice, suggesting that VEGF-D is functionally redundant with VEGF-C in the stimulation of developmental lymphangiogenesis. Our results suggest VEGF-C- and VEGF-D-independent functions for VEGFR-3 in the early embryo.
  •  
29.
  • He, Yulong, et al. (författare)
  • Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis.
  • 2004
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 64:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial progenitor cells have been shown to contribute to angiogenesis in various tumor models. Here, we have studied the relative contributions of bone marrow (BM)-derived endothelial progenitors and pre-existing lymphatic vessels to tumor lymphangiogenesis. We did not find significant incorporation of genetically marked BM-derived cells in lymphatic vessels during tumor- or vascular endothelial growth factor C-induced lymphangiogenesis. The degree of tumor lymphangiogenesis correlated with lymphatic vessel density in the peritumoral area, and despite tumor lymphangiogenesis, lymphatic metastasis failed to occur in gene-targeted vascular endothelial growth factor C(+/-) mice that have hypoplasia of the lymphatic network. Our data demonstrate that during tumor lymphangiogenesis and cancer cell dissemination via the lymphatics, the newly formed lymphatic vessels sprout from the pre-existing local lymphatic network with little if any incorporation of BM-derived endothelial progenitor cells.
  •  
30.
  • Hernández Vásquez, Magda, et al. (författare)
  • Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels
  • 2021
  • Ingår i: EMBO Journal. - : EMBO Press. - 0261-4189 .- 1460-2075. ; 40:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.
  •  
31.
  • Hess, Paul R, et al. (författare)
  • Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life.
  • 2014
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 124:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not Clec2-deficient mice. Analysis of mice lacking LVVs or lymphatic valves revealed that platelet-mediated thrombus formation limits LV backflow under conditions of impaired valve function. Examination of mice lacking integrin-mediated platelet aggregation indicated that platelet aggregation stabilizes thrombi that form in the lymphatic vascular environment to prevent retrograde blood flow. Collectively, these studies unveil a newly recognized form of hemostasis that functions with the LVV to safeguard the lymphatic vascular network throughout life.
  •  
32.
  • Hosking, Brett, et al. (författare)
  • Lymphatic vasculature : a molecular perspective.
  • 2007
  • Ingår i: Bioessays. - : Wiley. - 0265-9247 .- 1521-1878. ; 29:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The lymphatic vasculature comprises an intricate network of vessels critical for fluid homeostasis, immune surveillance and fat absorption. Recent studies have provided insights into the developmental processes and molecular mechanisms controlling the formation and remodelling of the lymphatic vessels. These studies have further demonstrated the essential and active role of the lymphatic vessels in various pathological conditions and advanced our understanding of the progression of human diseases, such as inflammation and tumorigenesis. In the context of the latest exciting findings, we review here the current understanding of the mechanisms of lymphatic development and contribution of lymphatic vessels to pathological conditions.
  •  
33.
  • Kadison, Stephanie R, et al. (författare)
  • EphB receptors and ephrin-B3 regulate axon guidance at the ventral midline of the embryonic mouse spinal cord.
  • 2006
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 26:35
  • Tidskriftsartikel (refereegranskat)abstract
    • EphB receptors and their ephrin-B ligands are required for midline guidance decisions at several rostrocaudal levels of the developing CNS. In the embryonic vertebrate spinal cord, ephrin-B3 is localized to the floor plate (FP) at the ventral midline (VM), ephrin-B1 and ephrin-B2 are expressed in the dorsal spinal cord, and decussated EphB receptor-bearing commissural axons navigate between these ventral and dorsal ephrin-B domains. Despite these compelling expression patterns, the in vivo role(s) for EphB and ephrin-B proteins in regulating the guidance of spinal commissural axons has not been established. Here, we use DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) labeling to assess the pathfinding of commissural axons in the spinal cords of ephrin-B and EphB mutant mouse embryos. In mice lacking ephrin-B3 or multiple EphB receptors, a significant number of axons followed aberrant trajectories in the immediate vicinity of the VM. Furthermore, forked transverse commissural (FTC) axons, a unique class of commissural axons that continues to project in the transverse plane on the contralateral side of the FP, were present at a markedly higher frequency in ephrin-B3 and EphB mutants, compared with wild-type embryos. Neither the midline guidance errors nor excessive numbers of FTC axons were observed in the spinal cords of ephrin-B3(lacz) mice that express a truncated form of ephrin-B3, which is capable of forward but not reverse signaling. In contrast to the midline guidance defects observed in EphB and ephrin-B3 mutant embryos, wild-type-like contralateral projections were observed in mice lacking ephrin-B1 and/or ephrin-B2.
  •  
34.
  • Karkkainen, Marika J, et al. (författare)
  • Lymphatic endothelium : a new frontier of metastasis research.
  • 2002
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The vascular endothelium is a dynamic tissue with many active functions. Until recently, endothelial cell (EC) biology studies have used cultured ECs from various organs; these cell lines are considered representative of the blood vascular endothelium. Very few lymphatic EC lines have been available, and these were derived from lymphatic tumours or large collecting lymphatic ducts. In the past, lymphatic vessels were defined largely by the lack of erythrocytes in their lumen, a lack of junctional complexes and the lack of a well-defined basement membrane. Now that lymphatic-specific vascular endothelial growth factors (VEGF-C and VEGF-D) and molecular cell surface markers such as the VEGFR-3 receptor have been identified, this definition needs to be updated. Recent developments have highlighted the importance of lymphatic ECs, and they could become the next focus for angiogenesis and metastasis research.
  •  
35.
  • Karpanen, Terhi, et al. (författare)
  • Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation.
  • 2006
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 169:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphatic vessel plasticity and stability are of considerable importance when attempting to treat diseases associated with the lymphatic vasculature. Development of lymphatic vessels during embryogenesis is dependent on vascular endothelial growth factor (VEGF)-C but not VEGF-D. Using a recombinant adenovirus encoding a soluble form of their receptor VEGFR-3 (AdVEGFR-3-Ig), we studied lymphatic vessel dependency on VEGF-C and VEGF-D induced VEGFR-3 signaling in postnatal and adult mice. Transduction with AdVEGFR-3-Ig led to regression of lymphatic capillaries and medium-sized lymphatic vessels in mice under 2 weeks of age without affecting collecting lymphatic vessels or the blood vasculature. No effect was observed after this period. The lymphatic capillaries of neonatal mice also regressed partially in response to recombinant VEGFR-3-Ig or blocking antibodies against VEGFR-3, but not to adenovirus-encoded VEGFR-2-Ig. Despite sustained inhibitory VEGFR-3-Ig levels, lymphatic vessel regrowth was observed at 4 weeks of age. Interestingly, whereas transgenic expression of VEGF-C in the skin induced lymphatic hyperplasia even during embryogenesis, similar expression of VEGF-D resulted in lymphangiogenesis predominantly after birth. These results indicate considerable plasticity of lymphatic vessels during the early postnatal period but not thereafter, suggesting that anti-lymphangiogenic therapy can be safely applied in adults.
  •  
36.
  • Karpanen, Terhi, et al. (författare)
  • Regulation of lymphangiogenesis--from cell fate determination to vessel remodeling.
  • 2006
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 312:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphatic vessels are important for the maintenance of normal tissue fluid balance, immune surveillance and adsorption of digested fats. During the past decade, the identification of lymphatic-specific markers and growth factors has enabled detailed studies of the lymphatic system, and gain- and loss-of-function experiments have greatly increased our understanding of the mechanisms of normal lymphatic development. Understanding the basic biology has provided novel insights into the pathologic conditions of the lymphatic system that contribute to lymphedema, inflammation or lymphatic metastasis, and opened possibilities for the development of better therapeutic strategies. Here we review the current knowledge about the molecular mechanisms regulating the development of the lymphatic vasculature; of the differentiation of lymphatic endothelial cells, of the regulation of the growth of lymphatic vessels, and of remodeling of the vasculature into a network consisting of lymphatic capillaries and collecting lymphatic vessels. Furthermore, we will discuss the molecular mechanisms involved in the pathological conditions of the lymphatic vessels.
  •  
37.
  • Korhonen, Emilia A., et al. (författare)
  • Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression
  • 2022
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 132:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C???induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110?? subunit or with small -molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C???induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.
  •  
38.
  •  
39.
  • Kubo, Hajime, et al. (författare)
  • Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea.
  • 2002
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 99:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor receptor-3 (VEGFR-3) is a major mediator of lymphangiogenesis. Recently, VEGFR-3 ligands, VEGF-C, and VEGF-D were reported to promote tumor lymphangiogenesis and lymphatic metastasis, and these processes were inhibited by blocking of the VEGFR-3-signaling pathway. Here, we have adapted the mouse corneal angiogenesis assay to study potential lymphangiogenic factors and inhibitors. Immunohistochemical analysis with lymphatic endothelial markers showed that VEGF-C induces lymphatic as well as blood vessel growth in the cornea. By contrast, VEGF induced angiogenesis but not lymphangiogenesis. Fibroblast growth factor-2 (FGF-2) stimulated both lymphangiogenesis and angiogenesis. FGF-2 up-regulated VEGF-C expression in vascular endothelial and perivascular cells. Furthermore, administration of blocking anti-VEGFR-3 antibodies inhibited the FGF-2-induced lymphangiogenesis. These findings show that VEGFR-3 can mediate lymphangiogenesis induced by other growth factors. Because increased expression of FGF-2 and VEGF-C has been associated with lymphatic metastasis, our results provide a potential strategy for the inhibition of lymphatic metastasis in cancer therapy.
  •  
40.
  • Lutter, Sophie, et al. (författare)
  • Regulation of Lymphatic Vasculature by Extracellular Matrix
  • 2014
  • Ingår i: Developmental Aspects of the Lymphatic Vascular System. - Vienna : Springer Berlin/Heidelberg. - 9783709116456 ; , s. 55-65
  • Bokkapitel (refereegranskat)abstract
    • The extracellular matrix (ECM) is a complex but highly organized network of macromolecules with different physical, biochemical, and mechanical properties. In addition to providing structural support to tissues, it regulates a variety of cellular responses during development and tissue homeostasis. Interactions between the lymphatic vessels and their ECM are starting to be recognized as important modulators of lymphangiogenesis. Here, we review the current knowledge of the structure and composition of the ECM of lymphatic vessels and discuss the role of individual matrix components and their cell surface receptors in regulating lymphatic vascular development and function.
  •  
41.
  • Lutter, Sophie, et al. (författare)
  • Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation.
  • 2012
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 197:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels--smooth muscle and endothelial cells--and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function.
  •  
42.
  •  
43.
  • Lyons, Oliver, et al. (författare)
  • Human venous valve disease caused by mutations in FOXC2 and GJC2
  • 2017
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 214:8, s. 2437-2452
  • Tidskriftsartikel (refereegranskat)abstract
    • Venous valves (VVs) prevent venous hypertension and ulceration. We report that FOXC2 and GJC2 mutations are associated with reduced VV number and length. In mice, early VV formation is marked by elongation and reorientation ("organization") of Prox1(hi) endothelial cells by postnatal day 0. The expression of the transcription factors Foxc2 and Nfatc1 and the gap junction proteins Gjc2, Gja1, and Gja4 were temporospatially regulated during this process. Foxc2 and Nfatc1 were coexpressed at P0, and combined Foxc2 deletion with calcineurin-Nfat inhibition disrupted early Prox1(hi) endothelial organization, suggesting cooperative Foxc2-Nfatc1 patterning of these events. Genetic deletion of Gjc2, Gja4, or Gja1 also disrupted early VV Prox1(hi) endothelial organization at postnatal day 0, and this likely underlies the VV defects seen in patients with GJC2 mutations. Knockout of Gja4 or Gjc2 resulted in reduced proliferation of Prox1(hi) valve-forming cells. At later stages of blood flow, Foxc2 and calcineurin-Nfat signaling are each required for growth of the valve leaflets, whereas Foxc2 is not required for VV maintenance.
  •  
44.
  • Lyons, Oliver, et al. (författare)
  • Mutations in EPHB4 cause human venous valve aplasia
  • 2021
  • Ingår i: JCI Insight. - : American Society For Clinical Investigation. - 2379-3708. ; 6:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
  •  
45.
  •  
46.
  • Martin-Almedina, Silvia, et al. (författare)
  • EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis
  • 2016
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 126:8, s. 3080-3088
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.
  •  
47.
  • Martinez-Corral, Ines, et al. (författare)
  • Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CA(H1047R) mutation, resulting in constitutive activation of the p110 alpha PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CA(H1047R)-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110 alpha activation determining the LM subtype. In the postnatal vasculature, PIK3CA(H1047R) promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
  •  
48.
  • Martinez-Corral, Ines, et al. (författare)
  • Genetic Lineage Tracing of Lymphatic Endothelial Cells in Mice.
  • 2018
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer New York. - 1064-3745 .- 1940-6029. ; 1846, s. 37-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Lineage tracing allows for identification of all progeny produced by a single cell or groups of cells and can thus be used to assess developmental fate of cells. Here we focus on one of the most widely used lineage tracing approaches that utilize the Cre/loxP system for site-specific genetic recombination in studying the developmental origins of lymphatic endothelial cells (LECs) in the mouse embryo. We discuss general considerations for a successful Cre/loxP based lineage tracing experiment and provide information about strains that are available for genetic lineage tracing of LECs. A protocol for lineage tracing analysis of the lymphatic vasculature by whole-mount immunofluorescence in two embryonic tissues, the skin and the mesentery, is also provided.
  •  
49.
  • Martinez-Corral, Ines, et al. (författare)
  • Nonvenous Origin of Dermal Lymphatic Vasculature
  • 2015
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 116:10, s. 1649-1654
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of vessels from pre-existing ones (angiogenesis). In contrast, mammalian lymphatic vasculature is thought to form exclusively by sprouting from embryonic veins (lymphangiogenesis). Alternative nonvenous sources of lymphatic endothelial cells have been suggested in chicken and Xenopus, but it is unclear whether they exist in mammals. Objective: We aimed to clarify the origin of the murine dermal lymphatic vasculature. Methods and Results: We performed lineage tracing experiments and analyzed mutants lacking the Prox1 transcription factor, a master regulator of lymphatic endothelial cell identity, in Tie2 lineage venous-derived lymphatic endothelial cells. We show that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins. Although lymphatic vessels of cervical and thoracic skin develop via sprouting from venous-derived lymph sacs, vessels of lumbar and dorsal midline skin form via assembly of non-Tie2-lineage cells into clusters and vessels through a process defined as lymphvasculogenesis. Conclusions: Our results demonstrate a significant contribution of nonvenous-derived cells to the dermal lymphatic vasculature. Demonstration of a previously unknown lymphatic endothelial cell progenitor population will now allow further characterization of their origin, identity, and functions during normal lymphatic development and in pathology, as well as their potential therapeutic use for lymphatic regeneration.
  •  
50.
  • Martinez-Corral, Ines, et al. (författare)
  • Regulation of lymphatic vascular morphogenesis : Implications for pathological (tumor) lymphangiogenesis
  • 2013
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 319:11, s. 1618-1625
  • Forskningsöversikt (refereegranskat)abstract
    • Lymphatic vasculature forms the second part of our circulatory system that plays a critical role in tissue fluid homeostasis. Failure of the lymphatic system can lead to excessive accumulation of fluid within the tissue, a condition called lymphedema. Lymphatic dysfunction has also been implicated in cancer metastasis as well as pathogenesis of obesity, atherosclerosis and cardiovascular disease. Since the identification of the first lymphatic marker VEGFR-3 and growth factor VEGF-C almost 20 years ago, a great progress has been made in understanding the mechanisms of lymphangiogenesis. This has been achieved largely through characterization of animal models with specific lymphatic defects and identification of genes causative of human hereditary lymphedema syndromes. In this review we will summarize the current understanding of the regulation of lymphatic vascular morphogenesis, focusing on mechanisms that have been implicated in both developmental and pathological (tumor) lymphangiogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 113
Typ av publikation
tidskriftsartikel (94)
forskningsöversikt (7)
annan publikation (5)
doktorsavhandling (5)
bokkapitel (2)
Typ av innehåll
refereegranskat (96)
övrigt vetenskapligt/konstnärligt (17)
Författare/redaktör
Mäkinen, Taija (110)
Alitalo, Kari (31)
Martinez-Corral, Ine ... (20)
Alitalo, K (11)
Betsholtz, Christer (9)
Stanczuk, Lukas (9)
visa fler...
Stritt, Simon (8)
Ulvmar, Maria H. (7)
Ortsäter, Henrik (7)
Petrova, Tatiana V. (6)
Smith, Alberto (6)
Petkova, Milena (6)
Mansour, Sahar (6)
Stacker, S A (5)
Daubel, Nina (5)
Adams, Ralf H. (5)
Mortimer, Peter S (5)
Frye, Maike (5)
Tatin, Florence (5)
Zhang, Yan (4)
Zhang, Yang (4)
Achen, M G (4)
Gängel, Konstantin (4)
Kiefer, Friedemann (4)
Tammela, Tuomas (4)
Zarkada, Georgia (4)
Sabine, Amelie (4)
Hernandez Vasquez, M ... (4)
Koh, Gou Young (4)
Karkkainen, Marika J ... (4)
Ortega, Sagrario (4)
Karpanen, T (4)
Modarai, Bijan (3)
Vanlandewijck, Micha ... (3)
He, Liqun (3)
Detmar, Michael (3)
Halin, Cornelia (3)
Aspelund, Aleksanter ... (3)
Antila, Salli (3)
Nurmi, Harri (3)
Saharinen, Pipsa (3)
Bazigou, Eleni (3)
Miura, Naoyuki (3)
Ylä-Herttuala, Seppo (3)
Eichmann, Anne (3)
Vizcay-Barrena, Gema (3)
Vicente, Andres (3)
Oliver, Guillermo (3)
Simpson, Michael A. (3)
Schoofs, Hans (3)
visa färre...
Lärosäte
Uppsala universitet (113)
Karolinska Institutet (10)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (112)
Finska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (88)
Naturvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy