SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Madissoon E) "

Search: WFRF:(Madissoon E)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sikkema, Lisa, et al. (author)
  • An integrated cell atlas of the lung in health and disease
  • 2023
  • In: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 29:6, s. 1563-1577
  • Journal article (peer-reviewed)abstract
    • Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
  •  
2.
  • Madissoon, E, et al. (author)
  • Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos
  • 2016
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 28995-
  • Journal article (peer-reviewed)abstract
    • PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1, CPHX2, ARGFX) or repressors (DPRX, DUXA, TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development.
  •  
3.
  •  
4.
  • Madissoon, E, et al. (author)
  • Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 8411-
  • Journal article (peer-reviewed)abstract
    • Pleomorphic adenoma gene 1 (PLAG1) is a transcription factor involved in cancer and growth. We discovered a de novo DNA motif containing a PLAG1 binding site in the promoters of genes activated during zygotic genome activation (ZGA) in human embryos. This motif was located within an Alu element in a region that was conserved in the murine B1 element. We show that maternally provided Plag1 is needed for timely mouse preimplantation embryo development. Heterozygous mouse embryos lacking maternal Plag1 showed disrupted regulation of 1,089 genes, spent significantly longer time in the 2-cell stage, and started expressing Plag1 ectopically from the paternal allele. The de novo PLAG1 motif was enriched in the promoters of the genes whose activation was delayed in the absence of Plag1. Further, these mouse genes showed a significant overlap with genes upregulated during human ZGA that also contain the motif. By gene ontology, the mouse and human ZGA genes with de novo PLAG1 motifs were involved in ribosome biogenesis and protein synthesis. Collectively, our data suggest that PLAG1 affects embryo development in mice and humans through a conserved DNA motif within Alu/B1 elements located in the promoters of a subset of ZGA genes.
  •  
5.
  •  
6.
  • Jouhilahti, EM, et al. (author)
  • The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation
  • 2016
  • In: Development (Cambridge, England). - : The Company of Biologists. - 1477-9129 .- 0950-1991. ; 143:19, s. 3459-3469
  • Journal article (peer-reviewed)abstract
    • Leucine twenty homeobox gene (LEUTX) is a PAIRED (PRD)-like homeobox gene that is expressed nearly exclusively in human preimplantation embryos. We previously identified a novel transcription start site for the predicted human LEUTX gene based on the transcriptional analysis of human preimplantation embryos. The novel variant encodes a protein with a complete homeodomain. Here we provide a detailed description of the molecular cloning of the complete homeodomain-containing LEUTX. Using a human embryonic stem cell overexpression model we show that the complete homeodomain isoform is functional and sufficient to activate the transcription of a large fraction of the genes found upregulated in human embryo genome activation, whereas the previously predicted partial homeodomain isoform is largely inactive. Another PRD-like transcription factor, DPRX, appears as a powerful repressor of transcription. We propose a two-stage model of human EGA in which LEUTX acts as a transcriptional activator at 4-cell stage, and DPRX as a balancing repressor at 8-cell stage. We conclude that LEUTX is a candidate regulator of human embryo genome activation.
  •  
7.
  •  
8.
  • Muus, Christoph, et al. (author)
  • Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 546-559
  • Journal article (peer-reviewed)abstract
    • Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
  •  
9.
  • Tohonen, V, et al. (author)
  • Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development
  • 2015
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6, s. 8207-
  • Journal article (peer-reviewed)abstract
    • Transcriptional program that drives human preimplantation development is largely unknown. Here, by using single-cell RNA sequencing of 348 oocytes, zygotes and single blastomeres from 2- to 3-day-old embryos, we provide a detailed analysis of the human preimplantation transcriptome. By quantifying transcript far 5′-ends (TFEs), we include in our analysis transcripts that derive from alternative promoters. We show that 32 and 129 genes are transcribed during the transition from oocyte to four-cell stage and from four- to eight-cell stage, respectively. A number of identified transcripts originates from previously unannotated genes that include the PRD-like homeobox genes ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB and LEUTX. Employing de novo promoter motif extraction on sequences surrounding TFEs, we identify significantly enriched gene regulatory motifs that often overlap with Alu elements. Our high-resolution analysis of the human transcriptome during preimplantation development may have important implications on future studies of human pluripotent stem cells and cell reprograming.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view