SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Madrigal Gonzalez Jaime) "

Sökning: WFRF:(Madrigal Gonzalez Jaime)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  •  
3.
  • Calatayud, Joaquín, et al. (författare)
  • Positive associations among rare species and their persistence in ecological assemblages
  • 2020
  • Ingår i: Nature Ecology & Evolution. - : Nature Publishing Group. - 2397-334X. ; 4:1, s. 40-45
  • Tidskriftsartikel (refereegranskat)abstract
    • According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments. Analysing spatial association networks among >300 terrestrial and aquatic assemblages, the authors find that the majority of negative associations involve abundant species. In contrast, rare species form mostly positive associations, potentially explaining their persistence in natural communities.
  •  
4.
  • Madrigal-Gonzalez, Jaime, et al. (författare)
  • Climate reverses directionality in the richness-abundance relationship across the World's main forest biomes
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study. In the other forest regions, any benefit from having more species is just as likely (9 regions) or even less likely (6 regions) than the effects of having more individuals. We demonstrate that diversity effects prevail in the most productive environments, and abundance effects become dominant towards the most limiting conditions. These findings can contribute to refining cost-effective mitigation strategies based on fostering carbon storage through increased tree diversity. Specifically, in less productive environments, mitigation measures should promote abundance of locally adapted and stress tolerant tree species instead of increasing species richness. Correlations between tree species diversity and tree abundance are well established, but the direction of the relationship is unresolved. Here the authors use path models to estimate plausible causal pathways in the diversity-abundance relationship across 23 global forests regions, finding a lack of general support for a positive diversity-abundance relationship, which is prevalent in the most productive lands on Earth only
  •  
5.
  • Madrigal-Gonzalez, Jaime, et al. (författare)
  • Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 642, s. 619-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change can impair ecosystem functions and services in extensive dry forests worldwide. However, attribution of climate change impacts on tree growth and forest productivity is challenging due to multiple interannual patterns of climatic variability associated with atmospheric and oceanic circulations. Moreover, growth responses to rising atmospheric CO2, namely carbon fertilization, as well as size ontogenetic changes can obscure the climate change signature as well. Here we apply Structural Equation Models (SEM) to investigate the relative role of climate change on tree growth in an extreme Mediterranean environment (i.e., extreme in terms of the combination of sandy-unconsolidated soils and climatic aridity). Specifically, we analyzed potential direct and indirect pathways by which different sources of climatic variability (i.e. warming and precipitation trends, the North Atlantic Oscillation, [NAO]; the Mediterranean Oscillation, MOO: the Atlantic Mediterranean Oscillation, [AMO]) affect aridity through their control on local climate (in terms of mean annual temperature and total annual precipitation), and subsequently tree productivity, in terms of basal area increments (BAI). Our results support the predominant role of Diameter at Breast Height (DHB) as the main growth driver. In terms of climate, NAO and AMO are the most important drivers of tree growth through their control of aridity (via effects of precipitation and temperature, respectively). Furthermore and contrary to current expectations, our findings also support a net positive role of climate warming on growth over the last 50 years and suggest that impacts of climate warming should be evaluated considering multi-annual and multi-decadal periods of local climate defined by atmospheric and oceanic circulation in the North Atlantic. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy