SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maggi Federico) "

Sökning: WFRF:(Maggi Federico)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • DeAngelis, Nicola, et al. (författare)
  • 2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy
  • 2021
  • Ingår i: World Journal of Emergency Surgery. - : BMC. - 1749-7922. ; 16:1
  • Forskningsöversikt (refereegranskat)abstract
    • Bile duct injury (BDI) is a dangerous complication of cholecystectomy, with significant postoperative sequelae for the patient in terms of morbidity, mortality, and long-term quality of life. BDIs have an estimated incidence of 0.4-1.5%, but considering the number of cholecystectomies performed worldwide, mostly by laparoscopy, surgeons must be prepared to manage this surgical challenge. Most BDIs are recognized either during the procedure or in the immediate postoperative period. However, some BDIs may be discovered later during the postoperative period, and this may translate to delayed or inappropriate treatments. Providing a specific diagnosis and a precise description of the BDI will expedite the decision-making process and increase the chance of treatment success. Subsequently, the choice and timing of the appropriate reconstructive strategy have a critical role in long-term prognosis. Currently, a wide spectrum of multidisciplinary interventions with different degrees of invasiveness is indicated for BDI management. These World Society of Emergency Surgery (WSES) guidelines have been produced following an exhaustive review of the current literature and an international expert panel discussion with the aim of providing evidence-based recommendations to facilitate and standardize the detection and management of BDIs during cholecystectomy. In particular, the 2020 WSES guidelines cover the following key aspects: (1) strategies to minimize the risk of BDI during cholecystectomy; (2) BDI rates in general surgery units and review of surgical practice; (3) how to classify, stage, and report BDI once detected; (4) how to manage an intraoperatively detected BDI; (5) indications for antibiotic treatment; (6) indications for clinical, biochemical, and imaging investigations for suspected BDI; and (7) how to manage a postoperatively detected BDI.
  •  
2.
  • Maggi, C. F., et al. (författare)
  • Isotope identity experiments in JET-ILW with H and D L-mode plasmas
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, rho*, nu*, beta and q in the plasma core confinement region and same T-i/T-e and Z(eff). The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, Omega(i) tau(E,th), and the scaled core plasma heat diffusivity, A chi(eff)/B-T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E x B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.
  •  
3.
  •  
4.
  • Aiba, N., et al. (författare)
  • Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.
  •  
5.
  •  
6.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  •  
8.
  •  
9.
  • Bowman, C., et al. (författare)
  • Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 58:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.
  •  
10.
  • Chang, Kuang Yu, et al. (författare)
  • Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates
  • 2023
  • Ingår i: Global Change Biology. - 1354-1013. ; 29:15, s. 4298-4312
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.
  •  
11.
  • Cirillo, Alessandro, et al. (författare)
  • Exploring family millennials' involvement in family business internationalization : Who should be their leader?
  • 2022
  • Ingår i: The Journal of Family Business Strategy. - : Elsevier. - 1877-8585 .- 1877-8593. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Drawing on generational theory, we argue that family millennials' involvement is a driver of export intensity in family firms, but it depends on two different CEO characteristics, namely: family membership and societal generational membership. An ordered probit regression analysis on 92 Italian family firms confirms that the involvement of family millennials positively influences export intensity and that a millennial CEO enhances that positive effect. In addition, we found that a non-family CEO amplifies such a positive effect, whereas a family CEO tends to turn the tide so that the effect of family millennials' involvement becomes negative. The novel findings of our explorative study contribute not only to the research on family business and internationalization, but also to the literature on generational theory.
  •  
12.
  •  
13.
  •  
14.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
15.
  • Frassinetti, Lorenzo, et al. (författare)
  • Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Three dimensionless scans in the normalized Larmor radius rho*, normalized collisionality nu* and normalized plasma pressure beta have been performed in JET with the ITER-like wall (JET-ILW). The normalized energy confinement and the thermal diffusivity exhibit a scaling with rho* consistent with the earlier results obtained in the carbon wall JET (JET-C) and with a gyro-Bohm scaling. In the pedestal, experimental results show that the stability is not dependent on rho*, qualitatively in agreement with the peeling-ballooning (P-B) model. The nu* dimensionless scaling shows that JET-ILW normalized confinement has a stronger dependence on collisionality than JET-C. This leads to a reduction of the difference in the confinement between JET-ILW and JET-C to approximate to 10% at low nu*. The pedestal stability shows an improvement with decreasing nu*. This is ascribed to the increase of the bootstrap current, to the reduction of the pedestal width and to the reduction of the relative shift between pedestal density and temperature position. The beta dimensionless scan shows that, at low collisionality, JET-ILW normalized confinement has no clear dependence with beta, in agreement with part of the earlier scalings. At high collisionality, a reduction of the normalized confinement with increasing beta is observed. This behaviour is driven mainly by the pedestal where the stability is reduced with increasing beta. The P-B analysis shows that the stability reduction with increasing beta at high nu* is due to the destabilizing effect of the increased relative shift.
  •  
16.
  • Frassinetti, Lorenzo, et al. (författare)
  • Role of the pedestal position on the pedestal performance in AUG, JET-ILW and TCV and implications for ITER
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing. - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the pedestal position on the pedestal performance has been investigated in AUG, JET-ILW and TCV. When the pedestal is peeling-ballooning (PB) limited, the three machines show a similar behaviour. The outward shift of the pedestal density relative to the pedestal temperature can lead to the outward shift of the pedestal pressure which, in turns, reduces the PB stability, degrades the pedestal confinement and reduces the pedestal width. Once the experimental density position is considered, the EPED model is able to correctly predict the pedestal height. An estimate of the impact of the density position on a ITER baseline scenario shows that the maximum reduction in the pedestal height is 10% while the reduction in the fusion power is between 10% and 40% depending on the assumptions for the core transport model used. In other plasmas, where the pedestal density is shifted even more outwards relative to the pedestal temperature, the pedestal does not seem PB limited and a different behaviour is observed. The outward shift of the density is still empirically correlated with the pedestal degradation but no change in the pressure position is observed and the PB model is not able to correctly predict the pedestal height. On the other hand, the outward shift of the density leads to a significant increase of η e and η i (where η e,i is the ratio of density to temperature scale lengths, ) which leads to the increase of the growth rate of microinstabilities (mainly ETG and ITG) by 50%. This suggests that, in these plasmas, the increase in the turbulent transport due to the outward shift of the density might play an important role in the decrease of the pedestal performance. 
  •  
17.
  •  
18.
  •  
19.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Maggi, C. F., et al. (författare)
  • Isotope effects on L-H threshold and confinement in tokamak plasmas
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.
  •  
24.
  • Maggi, C. F., et al. (författare)
  • Pedestal confinement and stability in JET-ILW ELMy H-modes
  • 2015
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 55:11
  • Tidskriftsartikel (refereegranskat)abstract
    • New experiments in 2013-2014 have investigated the physics responsible for the decrease in H-mode pedestal confinement observed in the initial phase of JET-ILW operation (2012 Experimental Campaigns). The effects of plasma triangularity, global beta and neutrals on pedestal confinement and stability have been investigated systematically. The stability of JET-ILW pedestals is analysed in the framework of the peeling-ballooning model and the model assumptions of the pedestal predictive code EPED. Low D neutrals content in the plasma, achieved either by low D-2 gas injection rates or by divertor configurations with optimum pumping, and high beta are necessary conditions for good pedestal (and core) performance. In such conditions the pedestal stability is consistent with the peeling-ballooning paradigm. Moderate to high D-2 gas rates, required for W control and stable H-mode operation with the ILW, lead to increased D neutrals content in the plasma and additional physics in the pedestal models may be required to explain the onset of the ELM instability. The changes in H-mode performance associated with the change in JET wall composition from C to Be/W point to D neutrals and low-Z impurities playing a role in pedestal stability, elements which are not currently included in pedestal models. These aspects need to be addressed in order to progress towards full predictive capability of the pedestal height.
  •  
25.
  • Maggi, C. F., et al. (författare)
  • Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The pedestal structure of type I ELMy H-modes has been analysed for JET with the ITER-like Wall (JET-ILW). The electron pressure pedestal width is independent of rho* and increases proportionally to root beta(pol,PED). Additional broadening of the width is observed, at constant beta(pol, PED), with increasing nu* and/ or neutral gas injection and the contribution of atomic physics effects in setting the pedestal width cannot as yet be ruled out. Neutral penetration alone does not determine the shape of the edge density profile in JET-ILW. The ratio of electron density to electron temperature scale lengths in the edge transport barrier region, eta(e), is of order 2-3 within experimental uncertainties. Existing understanding, represented in the stationary linear peeling-ballooning mode stability and the EPED pedestal structure models, is extended to the dynamic evolution between ELM crashes in JET-ILW, in order to test the assumptions underlying these two models. The inter-ELM temporal evolution of the pedestal structure in JET-ILW is not unique, but depends on discharge conditions, such as heating power and gas injection levels. The strong reduction in (pe,PED) with increasing D-2 gas injection at high power is primarily due to clamping of del T-e half way through the ELM cycle and is suggestive of turbulence limiting the T-e pedestal growth. The inter-ELM pedestal pressure evolution in JET-ILW is consistent with the EPED model assumptions at low gas rates and only at low beta at high gas rates. At higher beta and high gas rate the inter-ELM pedestal pressure evolution is qualitatively consistent with the kinetic ballooning mode (KBM) constraint but the peeling-ballooning (P-B) constraint is not satisfied and the ELM trigger mechanism remains as yet unexplained.
  •  
26.
  • Markatos, Evangelos, et al. (författare)
  • The Red Book
  • 2013
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • After the completion of its second year of operation, the SysSecNetwork of Excellence produced this “Red Book of Cybersecurity”to serve as a Roadmap in the area of Systems Security. To realizethis book, SysSec put together a “Task Force” of top-level young researchersin the area steered by the advice of SysSec WorkPackage Leaders. The TaskForce had vibrant consultations (i) with the Working Groups of SysSec, (ii)with the Associated members of SysSec, and (iii) with the broader SystemsSecurity Community. Capturing their feedback in an on-line questionnaire andin forward-looking “what if” questions, the Task Force was able to distill theirknowledge, their concerns, and their vision for the future.The result of this consultation has been captured in this Red Book whichwe hope will serve as a Road Map of Systems Security Research and as anadvisory document for policy makers and researchers who would like to have animpact on the Security of the Future Internet.
  •  
27.
  •  
28.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
29.
  •  
30.
  • Pamela, S. J. P., et al. (författare)
  • Recent progress in the quantitative validation of JOREK simulations of ELMs in JET
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as inter-ELM and ELM divertor heat fluxes, in order to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from dedicated pedestal models like EPED, and from non-linear MHD codes like JOREK, for which systematic validation against current experiments is necessary. In this paper, we show progress in the quantitative validation of the JOREK code using JET simulations. Results analyse the impact of diamagnetic terms on the dynamics and size of the ELMs, and evidence is provided that the onset of type-I ELMs is not governed by linear MHD stability alone, but that a nonlinear threshold could be responsible for large MHD events at the plasma edge.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Saarelma, S., et al. (författare)
  • Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign
  • 2019
  • Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666 .- 1070-664X .- 1089-7674. ; 26:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-consistent core-pedestal prediction model of a combination of EPED1 type pedestal prediction and a simple stiff core transport model is able to predict Type I ELMy (edge localized mode) pedestals of a large JET-ILW (ITER-like wall) database at the similar accuracy as is obtained when the experimental global plasma beta is used as input. The neutral penetration model [R. J. Groebner et al., Phys. Plasmas 9, 2134 (2002)] with corrections that take into account variations due to gas fueling and plasma triangularity is able to predict the pedestal density with an average error of 15%. The prediction of the pedestal pressure in hydrogen plasma that has higher core heat diffusivity compared to a deuterium plasma with similar heating and fueling agrees with the experiment when the isotope effect on the stability, the increased diffusivity, and outward radial shift of the pedestal are included in the prediction. However, the neutral penetration model that successfully predicts the deuterium pedestal densities fails to predict the isotope effect on the pedestal density in hydrogen plasmas.
  •  
35.
  • Saarelma, S., et al. (författare)
  • The effects of impurities and core pressure on pedestal stability in Joint European Torus (JET)
  • 2015
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The H-mode pedestal plays an important role in determining global confinement in tokamaks. In high triangularity H-mode experiments in Joint European Torus with the ITER-like wall (JET-ILW), significantly higher pedestal temperature and global confinement have been achieved with nitrogen seeding. The experimentally observed increase in pedestal height is inconsistent with the stability calculations using the experimental profiles. Numerically, we find that the consistency with stability improvement can be restored if we assume a shift of the pedestal inwards and increased ion dilution due to the impurity seeding. Significantly better confinement and pedestal height have been observed in JET-ILW plasmas when the core pressure is increased. The enhanced pedestal height can be linked to an improvement in edge stability arising from an increase in the Shafranov-shift, higher edge current, and pedestal widening in flux space.
  •  
36.
  • Solano, Emilia R., et al. (författare)
  • Axisymmetric oscillations at L-H transitions in JET : M-mode
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 57:2
  • Tidskriftsartikel (refereegranskat)abstract
    • L to H transition studies at JET have revealed an n = 0, m = 1 magnetic oscillation starting immediately at the L to H transition (called M-mode for brevity). While the magnetic oscillation is present a weak ELM-less H-mode regime is obtained, with a clear increase of density and a weak electron temperature pedestal. It is an intermediate state between L and H-mode. In ICRH heated plasmas or low density NBI plasmas the magnetic mode and the pedestal can remain steady (with small oscillations) for the duration of the heating phase, of order 10 s or more. The axisymmetric magnetic oscillation has period similar to 0.5-2 ms, and poloidal mode number m = 1: it looks like a pedestal localised up/down oscillation, although it is clearly a natural oscillation of the plasma, not driven by the position control system. Electron cyclotron emission, interferometry, reflectometry and fast Li beam measurements locate the mode in the pedestal region. Da, fast infrared camera and Langmuir probe measurements show that the mode modulates heat and particle fluxes to the target. The mode frequency appears to scale with the poloidal Alfven velocity, and not with sound speed (i.e. it is not a geodesic acoustic mode). A heuristic model is proposed for the frequency scaling of the mode. We discuss the relationship between the M-mode and other related observations near the L-H transition.
  •  
37.
  • Stefániková, Estera, et al. (författare)
  • Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (d) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.
  •  
38.
  • Tang, Jinyun, et al. (författare)
  • Feasibility of Formulating Ecosystem Biogeochemical Models From Established Physical Rules
  • 2024
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 129:6
  • Tidskriftsartikel (refereegranskat)abstract
    • To improve the predictive capability of ecosystem biogeochemical models (EBMs), we discuss the feasibility of formulating biogeochemical processes using physical rules that have underpinned the many successes in computational physics and chemistry. We argue that the currently popular empirically based approaches, such as multiplicative empirical response functions and the law of the minimum, will not lead to EBM formulations that can be continuously refined to incorporate improved mechanistic understanding and empirical observations of biogeochemical processes. Instead, we propose that EBM parameterizations, as a lossy data compression problem, can be better formulated using established physical rules widely used in computational physics and chemistry, and different biogeochemical processes can be more robustly integrated within a reactive-transport framework. Through several examples, we demonstrate how mathematical representations derived from physical rules can improve understanding of relevant biogeochemical processes and enable more effective communication between modelers, observationalists, and experimentalists regarding essential questions, such as what measurements are needed to meaningfully inform models and how can models generate new process-level hypotheses to test in empirical studies. Finally, while empirical models with more parameters are often less robust, physical rules-based models can be more robust and show lower predictive equifinality, stemming from their enhanced consistency in representations of processes, interactions and spatial scaling.
  •  
39.
  • Trevisan, Caterina, et al. (författare)
  • The Association Between Injurious Falls and Older Adults' Cognitive Function : The Role of Depressive Mood and Physical Performance
  • 2021
  • Ingår i: The journals of gerontology. Series A, Biological sciences and medical sciences. - : Oxford University Press (OUP). - 1079-5006 .- 1758-535X. ; 76:9, s. e163-e170
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The impact of falls on cognitive function is unclear. We explored whether injurious falls are associated with cognitive decline in older adults, and evaluated the role of changes in psychological and physical health as mediators of such association.Methods: This prospective study involved 2267 community-dwelling participants in the Swedish National study on Aging and Care in Kungsholmen (≥60 years). Data on injurious falls (ie, falls requiring medical attention) during each 3-year time interval of follow-up were obtained from national registers. Assessment of cognitive function (Mini-Mental State Examination), depressive mood (Montgomery-Åsberg Depression Rating Scale), and physical performance (walking speed) were carried out every 3 or 6 years over a 12-year follow-up. The association between falls and cognition was estimated through linear mixed-effects models, and the mediating role of changes in depressive mood and physical performance was tested using mediation analysis.Results: After adjusting for potential confounders, individuals who experienced injurious falls had a greater annual decline in Mini-Mental State Examination in the subsequent time interval (β = −1.49, 95% CI: −1.84; −1.13), than those who did not. The association increased with the occurrence of ≥2 falls (β = −2.13, 95% CI: −2.70; −1.56). Worsening of walking speed and depressive mood explained around 26% and 8%, respectively, of the association between falls and cognitive decline.Conclusions: Injurious falls are associated with greater cognitive decline, and this association is partly mediated by worsening of physical performance and, in a lesser extent, of depressive mood. These findings suggest that physical deficits and low mood are potential therapeutic targets for mitigating the association between falls and cognitive decline.
  •  
40.
  • Vetrano, Davide L., et al. (författare)
  • Fostering healthy aging : The interdependency of infections, immunity and frailty
  • 2021
  • Ingår i: Ageing Research Reviews. - : Elsevier BV. - 1568-1637 .- 1872-9649. ; 69
  • Forskningsöversikt (refereegranskat)abstract
    • Untangling the interdependency of infections, immunity and frailty may help to clarify their roles in the maintenance of health in aging individuals, and the recent COVID-19 pandemic has further highlighted such priority. In this scoping review we aimed to systematically collect the evidence on 1) the impact of common infections such as influenza, pneumonia and varicella zoster on frailty development, and 2) the role played by frailty in the response to immunization of older adults. Findings are discussed under a unifying framework to identify knowledge gaps and outline their clinical and public health implications to foster a healthier aging. Twenty-nine studies (113,863 participants) selected to answer the first question provided a moderately strong evidence of an association between infections and physical as well as cognitive decline – two essential dimensions of frailty. Thirteen studies (34,520 participants) investigating the second aim, showed that frailty was associated with an impaired immune response in older ages, likely due to immunosenescence. However, the paucity of studies, the absence of tools to predict vaccine efficacy, and the lack of studies investigating the efficacy of newer vaccines in presence of frailty, strongly limit the formulation of more personalized immunization strategies for older adults. The current evidence suggests that infections and frailty repeatedly cross each other pathophysiological paths and accelerate the aging process in a vicious circle. Such evidence opens to several considerations. First, the prevention of both conditions pass through a life course approach, which includes several individual and societal aspects. Second, the maintenance of a well-functioning immune system may be accomplished by preventing frailty, and vice versa. Third, increasing the adherence to immunization may delay the onset of frailty and maintain the immune system homeostasis, beyond preventing infections.
  •  
41.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41
Typ av publikation
tidskriftsartikel (34)
forskningsöversikt (5)
samlingsverk (redaktörskap) (1)
bok (1)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Zychor, I (29)
Frassinetti, Lorenzo (26)
Nunes, I (22)
Saarelma, S (22)
de la Luna, E (21)
Delabie, E (21)
visa fler...
Giroud, C (21)
Meneses, L (20)
Urano, H (20)
Flanagan, J (19)
Groth, M (19)
Kruezi, U (19)
Loarte, A (19)
Salmi, A (19)
Morris, J. (18)
Silva, C. (18)
Balboa, I (18)
Bilkova, P (18)
Blanchard, P (18)
Boboc, A (18)
Bolzonella, T (18)
Buratti, P (18)
Coelho, R (18)
Giacomelli, L (18)
Gohil, P (18)
Hobirk, J (18)
Joffrin, E (18)
Kempenaars, M (18)
Lehnen, M (18)
Lowry, C (18)
Luce, T (18)
Mailloux, J (18)
Nocente, M (18)
O'Gorman, T (18)
Okabayashi, M (18)
Petrzilka, V (18)
Piovesan, P (18)
Pironti, A (18)
Pitts, R (18)
Refy, D (18)
Romanelli, M (18)
Sauter, O (18)
Schmuck, S (18)
Sieglin, B (18)
Viola, B (18)
Walker, M (18)
Wiesen, S (18)
King, D. (18)
Garcia-Munoz, M. (18)
Simpson, J (18)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (30)
Uppsala universitet (30)
Chalmers tekniska högskola (21)
Stockholms universitet (4)
Karolinska Institutet (2)
Luleå tekniska universitet (1)
visa fler...
Linköpings universitet (1)
Jönköping University (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (40)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Teknik (10)
Medicin och hälsovetenskap (3)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy