SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Magnuson Ann) "

Sökning: WFRF:(Magnuson Ann)

  • Resultat 1-50 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agervald, Åsa (författare)
  • Maturation and Regulation of Cyanobacterial Hydrogenases
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Accelerated global warming plus an increasing need for energy is an equation not easily solved, thus new forms of sustainable energy production are urgently requested. In this context hydrogen production based on a cyanobacterial system offers an environmentally friendly alternative for energy capture and conversion. Cyanobacteria can produce hydrogen gas from sun light and water through the combination of photosystems and hydrogenases, and are suitable to cultivate in large scale. In the present thesis the maturation process of [NiFe]-hydrogenases is investigated with special focus on transcription of the accessory genes encoding proteins needed for assembly of the large and possibly also for the small hydrogenase subunit. The cyanobacteria used are two N2-fixing, filamentous, heterocystous strains; Nostoc sp. strain PCC 7120 and Nostoc punctiforme PCC 73102. For a biotechnological exploration of hydrogen production tools for regulatory purposes are important. The transcription factor CalA (cyanobacterial AbrB like) (Alr0946 in the genome) in Nostoc sp. strain PCC 7120 was found to be involved in hydrogen metabolism by regulating the transcription of the maturation protein HypC. Further the bidirectional hydrogenase activity was down-regulated in the presence of elevated levels of CalA, a result important to take into account when optimizing cyanobacteria for hydrogen production. CalA regulates at least 25 proteins in Nostoc sp. strain PCC 7120 and one of the down-regulated proteins was superoxide dismutase, FeSOD. The characterization of FeSOD shows that it has a specific and important function in the oxidative stress tolerance of Nostoc sp. stain PCC 7120. Since CalA is involved in regulation of both the hydrogen metabolism as well as stress responses these findings indicate that Alr0946 is an important transcription factor in Nostoc sp. strain PCC 7120 active on a global level in the cell. This thesis adds more knowledge concerning maturation and regulation of cyanobacterial hydrogenases which might be useful for future large scale hydrogen.
  •  
2.
  • Anderlund, Magnus F., et al. (författare)
  • Redox chemistry of a dimanganese(II,III) complex with an unsymmetric ligand : Water binding, deprotonation and accumulative light-induced oxidation
  • 2006
  • Ingår i: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-1948 .- 1099-0682. ; :24, s. 5033-5047
  • Tidskriftsartikel (refereegranskat)abstract
    • A dinuclear manganese complex {[(Mn2L)-L-II,IIII(mu-OAc)(2)]-ClO4} has been synthesised, where L is the dianion of 2-{[bis-(pyrid-2-ylmethyl)amino]methyl}-6-{[(3,5-di-tert-butyl-2- hydroxybenzyl)(pyrid-2-ylmethyl)amino]methyl)-4-methylphenol, an unsymmetric binucleating ligand with two coordinating phenol groups. The two manganese ions, with a Mn-Mn distance of 3.498 angstrom, are bridged by the two bidentate acetate ligands and the 4-methylphenolate group of the ligand, resulting in a N3O3 and N2O4 donor set of Mn-II and Mn-II, respectively. Electrochemically [Mn2(II,III)L(mu-OAc)(2)](+) is reduced to [(Mn2L)-L-II,II(mu-OAc)(2)] at E-1/2(1)=-0.53 V versus Fc(+/0) and oxidised to [(Mn2L)-L-III,III(mu-OAC)(2)](2+) at E-1/2(2)=0.38 V versus Fc(+/0). All three redox states have been characterised by EPR, IR and UV/Vis spectroscopy. Subsequent oxidation of [(Mn2L)-L-II,III(mu-OAc)(2)](2+) [E-1/2(3)=0.75 V vs. Fc(+/0)] in dry acetonitrile results in an unstable primary product with a lifetime of about 100 ins. At high scan rates quasireversible voltammetric behaviour is found for all three electrode processes, with particularly slow electron transfer for the II,III/II,II [k(o)(1) = 0.002 cms(-1) and III,III/II,III [k(o)(2) = 0.005 cms(-1)] couples, which can be rationalised in terms of major distortions of the Mn-II centres. In aqueous media the bridging acetates are replaced by water-derived ligands. Deprotonation of these stabilises higher valence states, and photo-induced oxidation of the manganese complex results in a (Mn2L)-L-IlI,IV complex with oxo or hydroxo bridging ligands, which is further oxidised to an EPR-silent product. These results demonstrate that a larger number of metal-centred oxidations can be compressed in a narrow potential range if build up of charge is avoided by charge-compensating reactions.
  •  
3.
  •  
4.
  •  
5.
  • Berglund, Sigrid, et al. (författare)
  • Hydrogen production by a fully de novo enzyme
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Molecular catalysts based on abundant elements that function in neutral water represent an essential component of sustainable hydrogen production. Artificial hydrogenases based on protein-inorganic hybrids have emerged as an intriguing class of catalysts for this purpose. We have prepared a novel artificial hydrogenase based on cobaloxime bound to a de novo three alpha-helical protein, α3C, via a pyridyl-based unnatural amino acid. The functionalized de novo protein was characterised by UV-visible, CD, and EPR spectroscopy, as well as MALDI spectrometry, which confirmed the presence and ligation of cobaloxime to the protein. The new de novo protein produced hydrogen under electrochemical, photochemical and reductive chemical conditions in neutral water solution. A change in hydrogen evolution capability of the de novo enzyme compared with native cobaloxime was observed, with turnover numbers around 80% of that of cobaloxime, and hydrogen evolution rates of 40% of that of cobaloxime. We discuss these findings in the context of existing literature, how our study contributes important information about the functionality of cobaloxime as hydrogen evolving catalysts in protein environments, and the feasibility of using de novo proteins for developent into artificial metalloenzymes. Small de novo proteins as enzyme scaffolds have the potential to function as upscalable bioinspired catalysts thanks to their efficient atom economy, and the findings presented here show that these types of novel enzymes are a possible product. 
  •  
6.
  •  
7.
  • Borgström, Magnus, et al. (författare)
  • Light induced manganese oxidation and long-lived charge separation in a Mn-2(II,II)-Ru-II (bpy)(3)-acceptor triad
  • 2005
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 127:49, s. 17504-17515
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoinduced electron-transfer reactions in a Mn-2(II.II)-R-II-NDI triad (1) ([Mn-2(bpmp)(OAc)(2)](+), bpmp = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyiphenolate and OAc = acetate, R-II = trisbipyridine ruthenium(II), and NDI = naphthalenediimide) have been studied by time-resolved optical and EPR spectroscopy. Complex 1 is the first synthetically linked electron donor-sensitizer-acceptor triad in which a manganese complex plays the role of the donor. EPR spectroscopy was used to directly demonstrate the light induced formation of both products: the oxidized manganese dimer complex (Mn-2(II.III)) and the reduced naphthalenediimide (NDIcenter dot-) acceptor moieties, while optical spectroscopy was used to follow the kinetic evolution of the [Ru(bpy)(3)](2+) intermediate states and the NDIcenter dot- radical in a wide temperature range. The average lifetime of the NDI- radical is ca. 600 mu s at room temperature, which is at least 2 orders of magnitude longer than that for previously reported triads based on a [Ru(bpy)(3)](2+) photosensitizer. At 140 K, this intramolecular recombination was dramatically slowed, displaying a lifetime of 0.1-1 s, which is comparable to many of the naturally occurring charge-separated states in photosynthetic reaction centra. It was found that the long recombination lifetime could be explained by an unusually large reorganization energy (lambda approximate to 2.0 eV), due to a large inner reorganization of the manganese complex. This makes the recombination reaction strongly activated despite the large driving force (-Delta G degrees = 1.07 eV). Thus, the intrinsic properties of the manganese complex are favorable for creating a long-lived charge separation in the "Marcus normal region" also when the charge separated state energy is high.
  •  
8.
  • Cardona, Tanai, 1983-, et al. (författare)
  • Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme
  • 2009
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1787:4, s. 252-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes.We could identify asignificant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled PhotosystemII complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme.
  •  
9.
  • Cardona, Tanai, 1983-, et al. (författare)
  • Excitation energy transfer to Photosystem I in filaments and heterocysts of Nostoc punctiforme
  • 2010
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1797:3, s. 425-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria adapt to varying light conditions by controlling the amount of excitation energy to the photosystems. On the minute time scale this leads to redirection of the excitation energy, usually referred to as state transitions, which involves movement of the phycobilisomes. We have studied short-term light adaptation in isolated heterocysts and intact filaments from the cyanobacterium Nostoc punctiforme ATCC 29133. In N. punctiforme vegetative cells differentiate into heterocysts where nitrogen fixation takes place. Photosystem II is inactivated in the heterocysts, and the abundancy of Photosystem I is increased relative to the vegetative cells. To study light-induced changes in energy transfer to Photosystem I, pre-illumination was made to dark adapted isolated heterocysts. Illumination wavelengths were chosen to excite Photosystem I (708 nm) or phycobilisomes (560. nm) specifically. In heterocysts that were pre-illuminated at 708. nm, fluorescence from the phycobilisome terminal emitter was observed in the 77 K emission spectrum. However, illumination with 560. nm light caused quenching of the emission from the terminal emitter, with a simultaneous increase in the emission at 750 nm, indicating that the 560 nm pre-illumination caused trimerization of Photosystem I. Excitation spectra showed that 560 nm pre-illumination led to an increase in excitation transfer from the phycobilisomes to trimeric Photosystem I. Illumination at 708 nm did not lead to increased energy transfer from the phycobilisome to Photosystem I compared to dark adapted samples. The measurements were repeated using intact filaments containing vegetative cells, and found to give very similar results as the heterocysts. This demonstrates that molecular events leading to increased excitation energy transfer to Photosystem I, including trimerization, are independent of Photosystem II activity.
  •  
10.
  • Cardona, Tanai, et al. (författare)
  • Isolation and characterization of thylakoid membranes from the filamentous cyanobacterium Nostoc punctiforme
  • 2007
  • Ingår i: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 131:4, s. 622-634
  • Tidskriftsartikel (refereegranskat)abstract
    • Nostoc punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc. A protocol for isolating thylakoid membranes was developed to examine the biochem. and biophys. aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N. punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analyzed by measuring oxygen evolution activity, fluorescence spectroscopy and ESR spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centers were active in water oxidn. in the final membrane prepn. Anal. of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b6/f could be obsd. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones.
  •  
11.
  • Cardona, Tanai, 1983- (författare)
  • The Heterocysts of Nostoc punctiforme : From Proteomics to Energy Transfer
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this thesis is to provide a thorough characterization of the photosynthetic machinery from the heterocysts of Nostoc punctiforme strain ATCC 29133. In this thesis I describe the protocols I have optimized for the isolation of thylakoids from vegetative cells, the purification of heterocysts and the isolation of thylakoids from the purified heterocysts. The composition of the thylakoid membranes was studied by two dimensional electrophoresis and mass-spectrometry. Further insight into the functionality of the photosynthetic complexes was obtained by EPR, electron transport measurements through Photosystem II (PSII), and fluorescence spectroscopy. The proteome of the heterocysts thylakoids compared to that of the vegetative cell was found to be dominated by Photosystem I (PSI) and ATP-synthase complexes, both essential for keeping high nitrogenase activities. Surprisingly, we found a significant amount of assembled monomeric PSII complexes in the heterocysts thylakoid membranes. We measured in vitro light-driven electron transfer from PSII in heterocysts using an artificial electron donor, suggesting that under certain circumstances heterocysts might activate PSII. Parallel to my main research I also worked in a collaboration to elucidate the total proteome of Nostoc sp. strain 7120 and Nostoc punctiforme using quantitative shotgun proteomics. Several hundred proteins were quantified for both species. It was possible to trace the detailed changes that occurred in the energy and nitrogen metabolism of a heterocyst after differentiation. Moreover, the presence of PSII proteins identified in our membrane proteome was also confirmed and extended. Lastly, I studied how the heterocysts are capable of responding to variations in light quality as compared to vegetative cells. Using 77 K fluorescence spectroscopy on heterocysts and vegetative cells previously illuminated with light at specific wavelengths, I was able to demonstrate that heterocysts still possess a possibly modified but functional antenna system, capable of harvesting light and transferring energy preferentially to PSI. The characterization of the membrane and total proteome permitted to draw a more comprehensive and integrated picture of the interplay between the distinct metabolic processes that are carried out in each cell type at the same time; from oxygenic photosynthesis and carbon fixation in the vegetative cells to the anoxygenic cyclic photophosphorylation essential to power nitrogen assimilation in the heterocysts.
  •  
12.
  •  
13.
  • Frisk, Margot L. A., et al. (författare)
  • Increased occurrence of respiratory symptoms is associated with indoor climate risk indicators : a cross-sectional study in a Swedish population
  • 2007
  • Ingår i: Respiratory Medicine. - : Elsevier BV. - 0954-6111 .- 1532-3064. ; 101:9, s. 2031-2035
  • Tidskriftsartikel (refereegranskat)abstract
    • A basic assumption was that exposure to the indoor environment would increase the manifestation of respiratory symptoms in predisposed individuals. The aim was to investigate the proportion of perceived respiratory symptoms attributed to specific environmental exposures, and associations related to indoor climate risk indicators, i.e. occurrence of damp or mould, insufficient ventilation and condensation on windows.MethodA questionnaire was mailed to a random sample of 8008 individuals, stratified for gender and age. The response rate was 84% (n=6732). Established criteria for current asthma were used to classify subjects into three subgroups: asthmatics, healthy and symptomatics (but without current asthma).ResultsThe proportion of symptoms attributed to specific environmental exposures increased in the total sample and in the three subgroups when indoor climate risk indicators, particularly damp or mould, were reported. Generally, the lowest proportions were found for healthy and the highest for asthmatics. Univariate analyses presented as relative risks (RR) (95% CI) showed significantly increased risks for perceived overall influence on airways for all groups, with RR ranging from 4.3 to 6.8. Although respiratory symptoms attributed to dust, environmental tobacco smoke (ETS) and strong scents increased when risk indicators were reported, RR were generally lower in all groups.ConclusionThe high frequency of respiratory symptoms among asthmatics increased when occurrences of risk indicators were reported. Similarly, increased symptoms were found for healthy indicating that indoor climate risk indicators may affect both healthy and unhealthy individuals.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Huang, Ping, et al. (författare)
  • Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis
  • 2004
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 0162-0134 .- 1873-3344. ; 98:5, s. 733-745
  • Tidskriftsartikel (refereegranskat)abstract
    • Two dinuclear manganese complexes, [Mn2BPMP(mu-OAc)(2)] . ClO4 (1, where BPMP is the anion of 2,6-bis {[N,N-di(2-pyridinemethyl)amino]methyl}-4-methylphenol) and [Mn2L(mu-OAc)(2)] . ClO4 (2, where L is the trianion of 2,6-bis{[N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N-(2-pyridinemethyl)amino]methyl}-4-methylphenol), undergo several oxidations by laser flash photolysis, using ruthenium(II)-tris-bipyridine (tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate) as photo-sensitizer and penta-amminechlorocobalt(III) chloride as external electron acceptor. In both complexes stepwise electron transfer was observed. In 1, four Mn-valence states from the initial Mn-2(II,II) to the Mn-2(III,IV) state are available. In 2, three oxidation steps are possible from the initial Mn-2(III,III) state. The last step is accomplished in the Mn-2(IV,IV) state, which results in a phenolate radical. For the first time we provide firm spectral evidence for formation of the first intermediate state, Mn-2(II,III) in 1 during the stepwise light-induced oxidation. Observation of Mn-2(II,III) is dependent on conditions that sustain the mu-acetato bridges in the complex, i.e., by forming Mn-2(II,III) in dry acetonitrile, or by addition of high concentrations of acetate in aqueous solutions. We maintain that the presence of water is necessary for the transition to higher oxidation states, e.g., Mn-2(III,III) and Mn-2(III,IV) in 1, due to a bridging ligand exchange reaction which takes place in the Mn-2(II,III) state in water solution. Water is also found to be necessary for reaching the Mn-2(IV,IV) state in 2, which explains why this state was not reached by electrolysis in our earlier work (Eur. J. Inorg. Chem (2002) 2965). In 2, the extra coordinating oxygen atoms facilitate the stabilization of higher Mn valence states than in 1, resulting in formation of a stable Mn-2(IV,IV) without disintegration of 2. In addition, further oxidation of 2, led to the formation of a phenolate radical (g = 2.0046) due to ligand oxidation. Its spectral width (8 mT) and very fast relaxation at 15 K indicates that this radical is magnetically coupled to the Mn-2(IV,IV) center.
  •  
19.
  • Huang, Ping, et al. (författare)
  • Photo-induced oxidation of a dinuclear Mn-2(II,II) complex to the Mn-2(III,IV) state by inter- and intramolecular electron transfer to Ru-III tris-bipyridine
  • 2002
  • Ingår i: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 91:1, s. 159-172
  • Tidskriftsartikel (refereegranskat)abstract
    • To model the structural and functional parts of the water oxidizing complex in Photosystem 11, a dimeric manganese(II,11) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru-II(bpy)3) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru-II(bpy), in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru-III(bpy), from the Mn-2(II,II) dimer, which then attained the Mn-2(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn-2(III,IV) state. Our data indicate that oxidation from the Mn-2(II,II) state proceeds stepwise via intermediate formation of Mn-2(II,III) and Mn-2(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn-2(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn-2(III,IV), this suggests that water is essential for the formation of the Mn-2(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem 11, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.
  •  
20.
  • Johansson, A., et al. (författare)
  • Synthesis and photophysics of one mononuclear Mn(III) and one dinuclear Mn(III,III) complex covalently linked to a ruthenium(II) tris(bipyridyl) complex
  • 2003
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 42, s. 7502-7511
  • Tidskriftsartikel (refereegranskat)abstract
    • The preparation of donor (D)-photosensitizer (S) arrays, consisting of a manganese complex as D and a ruthenium tris(bipyridyl) complex as S has been pursued. Two new ruthenium complexes containing coordinating sites for one (2a) and two manganese ions (3a) were prepared in order to provide models for the donor side of photosystem II in green plants. The manganese coordinating site consists of bridging and terminal phenolate as well as terminal pyridyl ligands. The corresponding ruthenium-manganese complexes, a manganese monomer 2b and dimer 3b, were obtained. For the dimer 3b, our data suggest that intramolecular electron transfer from manganese to photogenerated ruthenium(III) is fast, k(ET) > 5 x 10(7) s(-1).
  •  
21.
  •  
22.
  • Li, Xin, et al. (författare)
  • Homologous overexpression of NpDps2 and NpDps5 increases the tolerance for oxidative stress in the multicellular cyanobacterium Nostoc punctiforme
  • 2018
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 365:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous cyanobacterium Nostoc punctiforme has several oxidative stress-managing systems, including Dps proteins. Dps proteins belong to the ferritin superfamily and are involved in abiotic stress management in prokaryotes. Previously, we found that one of the five Dps proteins in N. punctiforme, NpDps2, was critical for H2O2 tolerance. Stress induced by high light intensities is aggravated in N. punctiforme strains deficient of either NpDps2, or the bacterioferritin-like NpDps5. Here, we have investigated the capacity of NpDps2 and NpDps5 to enhance stress tolerance by homologous overexpression of these two proteins in N. punctiforme. Both overexpression strains were found to tolerate twice as high concentrations of added H2O2 as the control strain, indicating that overexpression of either NpDps2 or NpDps5 will enhance the capacity for H2O2 tolerance. Under high light intensities, the overexpression of the two NpDps did not enhance the tolerance against general light-induced stress. However, overexpression of the heterocyst-specific NpDps5 in all cells of the filament led to a higher amount of chlorophyll-binding proteins per cell during diazotrophic growth. The OENpDps5 strain also showed an increased tolerance to ammonium-induced oxidative stress. Our results provide information of how Dps proteins may be utilised for engineering of cyanobacteria with enhanced stress tolerance.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Magnuson, Ann, et al. (författare)
  • A Biomimetic Model System for the Water Oxidizing Triad in Photosystem II
  • 1999
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 121:1, s. 89-96
  • Tidskriftsartikel (refereegranskat)abstract
    • In plants, solar energy is used to extract electrons from water, producing atmospheric oxygen. This is conducted by Photosystem II, where a redox ”triad” consisting of chlorophyll, a tyrosine, and a manganese cluster, governs an essential part of the process. Photooxidation of the chlorophylls produces electron transfer from the tyrosine, which forms a radical. The radical and the manganese cluster together extract electrons from water, providing the biosphere with an unlimited electron source. As a partial model for this system we constructed a ruthenium(II) complex with a covalently attached tyrosine, where the photooxidized ruthenium was rereduced by the tyrosine. In this study we show that the tyrosyl radical, which gives a transient EPR signal under illumination, can oxidize a manganese complex. The dinuclear manganese complex, which initially is in the Mn(III)/(III) state, is oxidized by the photogenerated tyrosyl radical to the Mn(III)/(IV) state. The redox potentials in our system are comparable to those in Photosystem II. Thus, our synthetic redox “triad” mimics important elements in the electron donor ”triad” in Photosystem II, significantly advancing the development of systems for artificial photosynthesis based on ruthenium−manganese complexes.
  •  
27.
  • Magnuson, Ann, et al. (författare)
  • Biomimetic and Microbial Approaches to Solar Fuel Generation
  • 2009
  • Ingår i: Accounts of Chemical Research. - : American Chemical Society (ACS). - 0001-4842 .- 1520-4898. ; 42:12, s. 1899-1909
  • Forskningsöversikt (refereegranskat)abstract
    • Photosynthesis is performed by a multitude of organisms, but in P nearly all cases, it is variations on a common theme: absorption of light followed by energy transfer to a reaction center where charge separation takes place, This initial form of chemical energy is stabilized by the biosynthesis of carbohydrates. To produce these energy-rich products, a substrate is needed that feeds in reductive equivalents, When photosynthetic microorganisms learned to use water as a substrate some 2 billion years ago, a fundamental barrier against unlimited use of solar energy was overcome. The possibility of solar energy use has inspired researchers to construct artificial photosynthetic systems that show analogy to parts of the intricate molecular machinery of photosynthesis. Recent years have seen a reorientation of efforts toward creating integrated light-to-fuel systems that can use solar energy for direct synthesis of energy-rich compounds, so-called solar fuels. Sustainable production of solar fuels is a long awaited development that promises extensive solar energy use combined with long-term storage. The stoichiometry of water splitting into molecular oxygen, protons, and electrons is deceptively simple; achieving it by chemical catalysis has proven remarkably difficult. The reaction center Photosystem II couples light-induced charge separation to an efficient molecular water-splitting catalyst, a Mn4Ca complex, and is thus an important template for biomimetic chemistry. In our aims to design biomimetic manganese complexes for light-driven water oxidation, we link photosensitizers and charge-separation motifs to potential catalysts in supramolecular assemblies. In photosynthesis, production of carbohydrates demands the delivery of multiple reducing equivalents to CO2. In contrast, the two-electron reduction of protons to molecular hydrogen is much less demanding. Virtually all microorganisms have enzymes called hydrogenases that convert protons to hydrogen, many of them with good catalytic efficiency. The catalytic sites of hydrogenases are now the center of attention of biomimetic efforts, providing prospects for catalytic hydrogen production with inexpensive metals. Thus, we might complete the water-to-fuel conversion: light + 2H(2)O -> 2H(2) + O-2 This reaction formula is to some extent already elegantly fulfilled by cyanobacteria and green algae, water-splitting photosynthetic microorganisms that under certain conditions also can produce hydrogen. An alternative route to hydrogen from solar energy is therefore to engineer these organisms to produce hydrogen more efficiently. This Account describes our original approach to combine research in these two fields: mimicking structural and functional principles of both Photosystem II and hydrogenases by synthetic chemistry and engineering cyanobacteria to become better hydrogen producers and ultimately developing new routes toward synthetic biology.
  •  
28.
  •  
29.
  • Magnuson, Ann, et al. (författare)
  • Bridging-type changes facilitate successive oxidation steps at about 1 V in two binuclear manganese complexes - implications for photosynthetic water-oxidation
  • 2006
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 1873-3344 .- 0162-0134. ; 100:7, s. 1234-1243
  • Tidskriftsartikel (refereegranskat)abstract
    • The redox behavior of two synthetic manganese complexes illustrates a mechanistic aspect of importance for light-driven water oxidation in Photosystem 11 (PSII) and design of biomimetic systems (artificial photosynthesis). The coupling between changes in oxidation state and structural changes was investigated for two binuclear manganese complexes (1 and 2), which differ in the set of first sphere ligands to Mn (N3O3 in 1, N2O4 in 2). Both complexes were studied by electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) in three oxidation states which had been previously prepared either electro- or photochemically. The following bridging-type changes are suggested. In 1: Mn-II-(mu-OR)(mu-OCO)(2)-Mn-II double left right arrow Mn-II-(mu-OR)(mu-OCO)(2)-Mn-III double right arrow Mn-III-(mu-OR)(mu-OCO)-(mu-O)-Mn-IV. In 2: Mn-II-(mu-OR)(mu-OCO)(2)-Mn-III double left right arrow Mn-III-(mu-OR)(mu-OCO)(2)-Mn-III double right arrow Mn-III-(mu-OR)([mu-OCO)(mu-O)-Mn-IV. In both complexes, the first one-electron oxidation proceeds without bridging-type change, but involves a redox-potential increase by 0.5-1 V. The second one-electron oxidation likely is coupled to mu-oxo-bridge (or mu-OH) formation which seems to counteract a further potential increase. In both complexes, mu-O(H) bridge formation is associated with a redox transition proceeding at similar to 1 V, but the mu-O(H) bridge is observed at the Mn-2(III,III) level in I and at the Mn-III,Mn-IV level in 2, demonstrating modulation of the redox behavior by the terminal ligands. It is proposed that also in PSII bridging-type changes facilitate successive oxidation steps at approximately the same potential. (c) 2006 Elsevier Inc. All rights reserved.
  •  
30.
  •  
31.
  • Magnuson, Ann (författare)
  • Electron Donor Systems in Natural and Artificial Photosynthesis
  • 1998
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Photosynthesis is the process by which light energy is converted into chemical products, in photoautotrophic bacteria, algae and plants. The principal idea is the production of reducing agents by photo-induced oxidation of a sacrificial electron donor. Photosystem II in plants, algae and cyanobacteria, absorbs light and catalyzes the oxidation of water, liberating electrons that are used to form reductants. By capturing light, plants and algae provide the entire biosphere with an electron source for the buildup of living tissue. The active site for photosynthetic water oxidation contains a tetranuclear manganese cluster and a redox active tyrosyl residue. Together with the photosensitizer chlorophylls in the reaction center of Photosystem II, the manganese and the tyrosine activate and split water molecules into molecular oxygen, electrons and protons. In the first part of this thesis the nature of the manganese binding site, and the electron transfer reactions involved in the assembly of the manganese cluster were investigated. Selective chemical modification of histidyl and carboxylic acid residues was conducted on the manganese binding area of Photosystem II. Kinetic studies of manganese binding after chemical modification revealed binding sites with different affinity for manganese. Two binding sites containing histidines were found, and two or more sites of carboxylic acid residues. The participation of the redox active cofactors Tyrosine-D and cytochrome-b559 in the activation of the water oxidizing center was studied using EPR spectroscopy. Tyrosine-D and cytochrome-b559 was found to aid Photosystem II in the assembly of a functional manganese cluster, by acting as auxilliary electron donors, and in the case of cytochrome-b559 under high light intensities, also as auxilliary electron acceptor. The two cofactors thereby prevent light-induced protein damadge during activation of the water oxidizing complex. In the second part of the thesis, the properties and reactions of novel compounds, synthesized with the objective to mimic the water oxidizing complex, were studied by optical and EPR spectroscopy. A ruthenium complex, serving as photosensitizer, was covalently connetced to a tyrosine. Light-induced electron transfer from the tyrosine to the ruthenium part was generated in the complex, similar to the reactions in Photosystem II. This super-molecule was then allowed to react with a synthetic dinuclear manganese complex. Electron transfer from manganese to the photooxidized tyrosine was observed, thereby mimicking the stepwise electron transfer reactions that take place on the electron donor side of Photosystem II. This is the first functional mimic of the water oxidizing triad in Photosystem II, and a new platform for regenerative electron donor systems in artificial photosynthesis.
  •  
32.
  • Magnuson, Ann (författare)
  • Heterocyst Thylakoid Bioenergetics
  • 2019
  • Ingår i: Life. - : MDPI. - 2075-1729. ; 9:1
  • Forskningsöversikt (refereegranskat)abstract
    • Heterocysts are specialized cells that differentiate in the filaments of heterocystous cyanobacteria. Their role is to maintain a microoxic environment for the nitrogenase enzyme during diazotrophic growth. The lack of photosynthetic water oxidation in the heterocyst puts special constraints on the energetics for nitrogen fixation, and the electron transport pathways of heterocyst thylakoids are slightly different from those in vegetative cells. During recent years, there has been a growing interest in utilizing heterocysts as cell factories for the production of fuels and other chemical commodities. Optimization of these production systems requires some consideration of the bioenergetics behind nitrogen fixation. In this overview, we emphasize the role of photosynthetic electron transport in providing ATP and reductants to the nitrogenase enzyme, and provide some examples where heterocysts have been used as production facilities.
  •  
33.
  • Magnuson, Ann, et al. (författare)
  • High-valent Ruthenium-Manganese Complexes for Solar Energy Production.
  • 2001
  • Ingår i: PS2001 Proceedings.
  • Konferensbidrag (refereegranskat)abstract
    • We present progress in the development of artificial photosynthesis, as a means to harvesting and storage of solar energy. The plan is to compose molecular systems that combine known photochemistry with emerging functional model compounds. A photochemical device for solar energy conversion contains a photosensitizer, an electron acceptor system and a donor system that prevents charge recombination. Our goal is to utilize water as sacrificial electron donor, which will allow a net production of reducing equivalents, and the ultimate production of fuel. The only light-driven molecular catalyst for water oxidation exists in Photosystem II (PSII), which has a tetranuclear Mn-cluster in the active site. Here we present several Mn-compounds, that we have developed for the purpose of creating water-oxidizing catalysts. Our idea is to link Ru-tris(bipyridine) derivatives, which mimicks the function of the primary donor in PS II, with manganese complexes, mimicking the tetra-Mn cluster on the PSII donor side. We have constructed a number of heteronuclear complexes, containing a Ru-photosensitizer and various Mn-complexes. The compounds have been characterized with regards to their photophysical and photochemical properties, redox potentials and structure. The most promising compounds are capable of undergoing several electron transfers from the Mn-complex to the photosensitizer, leaving 3 to 4 oxidizing equivalents on the Mn. In the latest development, we have constructed ligands that stabilize higher oxidation states in Mn, in order to promote formation of Mn(V) which many believes is an intermediate in the water oxidation mechanism.
  •  
34.
  •  
35.
  • Magnuson, Ann, et al. (författare)
  • Mimicking electron transfer reactions in photosystem II : synthesis and photochemical characterization of a ruthenium(II) tris(bipyridyl) complex with a covalently linked tyrosine.
  • 1997
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 119:44, s. 10720-10725
  • Tidskriftsartikel (refereegranskat)abstract
    • In the natural photosynthetic reaction center photosystem II, absorption of a photon leads to photooxidationof the primary electron donor P680, which subsequently retrieves electrons from a tyrosyl residue, functioning as aninterface to the oxygen-evolving manganese complex. In a first step toward mimicking these reactions, we havemade a Ru(II)-polypyridine complex with an attached tyrosyl moiety. The photoexcited ruthenium complex playedthe role of P680and was first oxidized by external acceptors. Combined transient absorbance and EPR studies provided evidence that the Ru(III) formed was reduced by intramolecular electron transfer from the attached tyrosine, with a rate constant of 5104s-1. Thus we show that a tyrosine radical could be formed by light-induced electrontransfer reactions, and we indicate future directions for developing a closer analogy with the photosystem II reactions.
  •  
36.
  • Magnuson, Ann, et al. (författare)
  • Modeling Photosystem I with the alternative reaction center protein PsaB2 in the nitrogen fixing cyanobacterium Nostoc punctiforme
  • 2011
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1807:9, s. 1152-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • Five nitrogen fixing cyanobacterial strains have been found to contain PsaB2, an additional and divergent gene copy for the Photosystem I reaction center protein PsaB. In all five species the divergent gene, psaB2, is located separately from the normal psaAB operon in the genome. The protein, PsaB2, was recently identified in heterocysts of Nostoc punctiforme sp. strain PCC 73102. 12 conserved amino acid replacements and one insertion, were identified by a multiple sequence alignment of several PsaB2 and PsaB1 sequences. Several, including an inserted glutamine, are located close to the iron-sulfur cluster F(x) in the electron transfer chain. By homology modeling, using the Photosystem I crystal structure as template, we have found that the amino acid composition in PsaB2 will introduce changes in critical parts of the Photosystem I protein structure. The changes are close to F(x) and the phylloquinone (PhQ) in the B-branch, indicating that the electron transfer properties most likely will be affected. We suggest that the divergent PsaB2 protein produces an alternative Photosystem I reaction center with different structural and electron transfer properties. Some interesting physiologcial consequences that this can have for the function of Photosystem I in heterocysts, are discussed.
  •  
37.
  • Magnuson, Ann, et al. (författare)
  • Molecular Chemistry for Solar Fuels : From Natural to Artificial Photosynthesis
  • 2012
  • Ingår i: Australian journal of chemistry (Print). - 0004-9425 .- 1445-0038. ; 65:6, s. 564-572
  • Forskningsöversikt (refereegranskat)abstract
    • The world needs new, environmentally friendly, and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap, abundant, and renewable resources. The research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel, and proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis is expanding rapidly and most of the different scientific visions for solar fuels are briefly reviewed. Research strategies for the development of artificial photosynthesis to produce solar fuels are overviewed, with some critical concepts discussed in closer detail.
  •  
38.
  •  
39.
  •  
40.
  • Magnuson, Ann, et al. (författare)
  • Thylakoid membrane function in heterocysts
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1857:3, s. 309-319
  • Forskningsöversikt (refereegranskat)abstract
    • Multicellular cyanobacteria form different cell types in response to environmental stimuli. Under nitrogen limiting conditions a fraction of the vegetative cells in the filament differentiate into heterocysts. Heterocysts are specialized in atmospheric nitrogen fixation and differentiation involves drastic morphological changes on the cellular level, such as reorganization of the thylakoid membranes and differential expression of thylakoid membrane proteins. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase by developing an extra polysaccharide layer that limits air diffusion into the heterocyst and by upregulating heterocyst-specific respiratory enzymes. In this review article, we summarize what is known about the thylakoid membrane in heterocysts and compare its function with that of the vegetative cells. We emphasize the role of photosynthetic electron transport in providing the required amounts of ATP and reductants to the nitrogenase enzyme. In the light of recent high-throughput proteomic and transcriptomic data, as well as recently discovered electron transfer pathways in cyanobacteria, our aim is to broaden current views of the bioenergetics of heterocysts. This article is part of a Special Issue entitled: Bioenergetic systems in bacteria.
  •  
41.
  • Magnuson, Ann, et al. (författare)
  • Toward Sustainable H-2 Production : Linking Hydrogenase with Photosynthesis
  • 2020
  • Ingår i: Joule. - : CellPress. - 2542-4351. ; 4:6, s. 1157-1159
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Molecular hydrogen, H-2, is an energy carrier that is increasing in popularity as an alternative fuel. Presently, the major part of commercially available H-2 is produced from fossil resources. To make H-2 a true contender to fossil fuels, a sustainable production via water splitting by renewable electricity in combination with earth-abundant catalysts or by photosynthetic microorganisms is required.
  •  
42.
  •  
43.
  • Magnuson, Karin, et al. (författare)
  • Healing of tympanic membrane after myringotomy during Streptococcus pneumoniae otitis media : An otomicroscopic and histologic study in the rat
  • 1996
  • Ingår i: Annals of Otology, Rhinology and Laryngology. - : SAGE Publications. - 0003-4894 .- 1943-572X. ; 105:5, s. 397-404
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of our study was to elucidate the course of healing of the tympanic membrane (TM) when myringotomy was performed during acute otitis media. The early and long-lasting structural changes of the TM were studied in an animal model. Rats were inoculated with Streptococcus pneumoniae (PnC) type 3 in the bulla. When the infection was manifest, myringotomy was performed. On days 4 and 12, and 3 and 6 months after myringotomy, the TM status was checked by otomicroscopy and TMs were prepared for light and electron microscopy. Comparison was made with PnC-infected TMs that were not perforated, as well as myringotomized noninfected TMs. The infection resolved more slowly in myringotomized ears compared to PnC-infected ears that were left untouched. After 6 months, the pars tensa of the myringotomized infected ears was thickened and showed a disorganized collagen structure, compared with myringotomized noninfected ears, in which TMs were normalized. The PnC- infected TMs without myringotomy were completely normalized after 2 months. We conclude that a combination of bacterial infection and myringotomy causes long-lasting changes in TM structure. This impaired structure of the connective tissue could be of importance in chronic middle ear disease as a presumptive site for retraction and perforation of the TM.
  •  
44.
  • Magnuson, Karin, et al. (författare)
  • The tympanic membrane and middle ear mucosa during non-typeable Haemophilus influenzae and Haemophilus influenzae type b acute otitis media : a study in the rat
  • 1997
  • Ingår i: Acta Oto-Laryngologica. - : Informa UK Limited. - 0001-6489 .- 1651-2251. ; 117:3, s. 396-405
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-typeable Haemophilus influenzae (NTHi) and encapsulated Haemophilus influenzae type b (Hib) were inoculated into the middle ears of Sprague-Dawley rats. Tympanic membrane (TM) status was assessed otomicroscopically and specimens from various middle ear areas were prepared for light microscopy at various times during the acute phase and up to 6 months after inoculation. Irrespective of bacteria strain, acute otitis media (AOM) was present in all ears 4 days after inoculation. The Hib-infected ears showed initially a severe course of AOM, but all were otomicroscopically resolved by day 12, at which time a few NTHi-inoculated ears still exhibited middle ear effusion. The TMs infected with Hib had normalized without scar formation, whereas NTHi induced a persistent thickening of the TMs in half of all cases. The middle ear mucosa of NTHi-infected ears initially showed vigorous activity among the goblet cells, but the mucosa normalized after the acute phase. Hib, by contrast, induced prominent changes in the middle ear mucosa. Initially, no goblet cell granules or ciliated cells could be observed in the mucosa. Later on, the epithelium contained large, active goblet cells. Glands appeared beneath the mucosa which persisted as streaks of epithelial cells throughout the study period. The findings show that NTHi and Hib both induce AOM but with differing clinical courses, and affect different targets in the middle ear.
  •  
45.
  • Moparthi, Vamsi, et al. (författare)
  • The two Dps proteins, NpDps2 and NpDps5, are involved in light-induced oxidative stress tolerance in the N-2-fixing cyanobacterium Nostoc punctiforme
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1857:11, s. 1766-1776
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria are photosynthetic prokaryotes that are considered biotechnologically prominent organisms for production of high-value compounds. Cyanobacteria are subject to high-light intensities, which is a challenge that needs to be addressed in design of efficient bio-engineered photosynthetic organisms. Dps proteins are members of the ferritin superfamily and are omnipresent in prokaryotes. They play a major role in oxidative stress protection and iron homeostasis. The filamentous, heterocyst-forming Nostoc punctiforme, has five Dps proteins. In this study we elucidated the role of these Dps proteins in acclimation to high light intensity, the gene loci organization and the transcriptional regulation of all five dps genes in N. punctiforme was revealed, and dps-deletion mutant strains were used in physiological characterization. Two mutants defective in Dps2 and Dps5 activity displayed a reduced fitness under increased illumination, as well as a differential Photosystem (PS) stoichiometry, with an elevated Photosystem II to Photosystem I ratio in the dps5 deletion strain. This work establishes a Dps-mediated link between light tolerance, H2O2 detoxification, and iron homeostasis, and provides further evidence on the non-redundant role of multiple Dps proteins in this multicellular cyanobacterium.
  •  
46.
  • Németh, Brigitta, et al. (författare)
  • [FeFe]-hydrogenase maturation : H-cluster assembly intermediates tracked by electron paramagnetic resonance, infrared, and X-ray absorption spectroscopy
  • 2020
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Nature. - 0949-8257 .- 1432-1327. ; 25:5, s. 777-788
  • Tidskriftsartikel (refereegranskat)abstract
    • [FeFe]-hydrogenase enzymes employ a unique organometallic cofactor for efficient and reversible hydrogen conversion. This so-called H-cluster consists of a [4Fe-4S] cubane cysteine linked to a diiron complex coordinated by carbon monoxide and cyanide ligands and an azadithiolate ligand (adt =NH(CH2S)(2)).[FeFe]-hydrogenase apo-protein binding only the [4Fe-4S] sub-complex can be fully activated in vitro by the addition of a synthetic diiron site precursor complex ([2Fe](adt)). Elucidation of the mechanism of cofactor assembly will aid in the design of improved hydrogen processing synthetic catalysts. We combined electron paramagnetic resonance, Fourier-transform infrared, and X-ray absorption spectroscopy to characterize intermediates of H-cluster assembly as initiated by mixing of the apo-protein (HydA1) from the green alga Chlamydomonas reinhardtii with [2Fe](adt). The three methods consistently show rapid formation of a complete H-cluster in the oxidized, CO-inhibited state (Hox-CO) already within seconds after the mixing. Moreover, FTIR spectroscopy support a model in which Hox-CO formation is preceded by a short-lived Hred'-CO-like intermediate. Accumulation of Hox-CO was followed by CO release resulting in the slower conversion to the catalytically active state (Hox) as well as formation of reduced states of the H-cluster. [GRAPHICS] .
  •  
47.
  •  
48.
  • Németh, Brigitta, 1990- (författare)
  • The birth of the hydrogenase : Studying the mechanism of [FeFe] hydrogenase maturation
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The [FeFe] hydrogenases are ancient metalloenzymes that catalyse the reversible interconversion between protons, electrons and molecular hydrogen. Despite the large structural variability within the [FeFe] hydrogenase family, the active site, the so called “H-cluster” is present in every representative. The H-cluster is composed by a four cysteine coordinated [4Fe4S] cluster, ligated via a shared cysteine to a biologically unique [2Fe] subsite decorated with CO and CN ligands and an azadithiolate bridging ligand. The biosynthesis of the [2Fe] subsite requires a maturation machinery, composed of at least three maturase enzymes, denoted HydG, HydE, and HydF. HydE and HydG are members of the radical SAM enzyme family, and are responsible for the construction of a pre-catalyst on HydF. This pre-catalyst is finally transferred from HydF to HydA, where it becomes part of the H-cluster.Recently, a pioneer study combined synthetic chemistry and biochemistry in order to create semi-synthetic HydF proteins. Synthetic mimics of the [2Fe] subsite were introduced to HydF, and this resulting semi-synthetic HydF was used to activate the unmatured hydrogenase (apo-HydA). This technique ushered in a new era in [FeFe] hydrogenase research.This thesis work is devoted to a deeper understanding of H-cluster formation and [FeFe] hydrogenase maturation, and this process is studied using standard molecular biological and biochemical techniques, and EPR, FTIR, XAS and GEMMA spectroscopic techniques combined with this new type of chemistry mentioned above. EPR spectroscopy was employed to verify the construction of a semi-synthetic [FeFe] hydrogenase inside living cells. The addition of a synthetic complex to cell cultures expressing apo-HydA resulted in a rhombic EPR signal, attributable to an Hox-like species. Moreover, the assembly mechanism of the H-cluster was probed in vitro using XAS, EPR, and FTIR spectroscopy. We verified with all three techniques that the Hox-CO state is formed on a time-scale of seconds, and this state slowly turns into the catalytically active Hox via release of a CO ligand. Furthermore, a semi-synthetic form of the HydF protein from Clostridium acetobutylicum was prepared and characterized in order to prove that such semi-synthetic forms of HydF are biologically relevant. Finally,GEMMA measurements were performed to elucidate the quaternary structure of the HydF-HydA interaction, revealing that dimeric HydF is interacting with a monomeric HydA. However, mutant HydF proteins were prepared, lacking the dimerization (as well as its GTPase) domain, and these severely truncated forms of HydF was found to still retain the capacity to both harbor the pre-catalyst as well as transferring it to apo-HydA. These observations highlight the multi-functionality of HydF, where different domains are critical in different steps of the maturation, that is the dimerization and GTPase domain are rather involved in pre-catalyst assembly rather than its transfer to apo-HydA.
  •  
49.
  • Németh, Brigitta, et al. (författare)
  • The maturase HydF enables [FeFe] hydrogenase assembly via transient, cofactor-dependent interactions
  • 2020
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 295:33, s. 11891-11901
  • Tidskriftsartikel (refereegranskat)abstract
    • [FeFe] hydrogenases have attracted extensive attention in the field of renewable energy research because of their remarkable efficiency for H(2)gas production. H(2)formation is catalyzed by a biologically unique hexanuclear iron cofactor denoted the H-cluster. The assembly of this cofactor requires a dedicated maturation machinery including HydF, a multidomain [4Fe4S] cluster protein with GTPase activity. HydF is responsible for harboring and delivering a precatalyst to the apo-hydrogenase, but the details of this process are not well understood. Here, we utilize gas-phase electrophoretic macromolecule analysis to show that a HydF dimer forms a transient interaction complex with the hydrogenase and that the formation of this complex depends on the cofactor content on HydF. Moreover, Fourier transform infrared, electron paramagnetic resonance, and UV-visible spectroscopy studies of mutants of HydF show that the isolated iron-sulfur cluster domain retains the capacity for binding the precatalyst in a reversible fashion and is capable of activating apo-hydrogenase inin vitroassays. These results demonstrate the central role of the iron-sulfur cluster domain of HydF in the final stages of H-cluster assembly,i.e.in binding and delivering the precatalyst.
  •  
50.
  • Ow, Saw Yen, et al. (författare)
  • Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-Plex isobaric peptide tags
  • 2008
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 7:4, s. 1615-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous cyanobacterium Nostoc sp. strain PCC 7120 is capable of fixing atmospheric nitrogen. The labile nature of the core process requires the terminal differentiation of vegetative cells to form heterocysts, specialized cells with altered cellular and metabolic infrastructure to mediate the N2-fixing process. We present an investigation targeting the cellular proteomic expression of the heterocysts compared to vegetative cells of a population cultured under N2-fixing conditions. New 8-plex iTRAQ reagents were used on enriched replicate heterocyst and vegetative cells, and replicate N2-fixing and non-N2-fixing filaments to achieve accurate measurements. With this approach, we successfully identified 506 proteins, where 402 had confident quantifications. Observations provided by purified heterocyst analysis enabled the elucidation of the dominant metabolic processes between the respective cell types, while emphasis on the filaments enabled an overall comparison. The level of analysis provided by this investigation presents various tools and knowledge that are important for future development of cyanobacterial biohydrogen production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 65
Typ av publikation
tidskriftsartikel (46)
annan publikation (7)
doktorsavhandling (4)
forskningsöversikt (4)
konferensbidrag (2)
bokkapitel (2)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (16)
populärvet., debatt m.m. (1)
Författare/redaktör
Magnuson, Ann (58)
Styring, Stenbjörn (29)
Hammarström, Leif (16)
Lomoth, Reiner (13)
Sun, Licheng (12)
Åkermark, Björn (10)
visa fler...
Huang, Ping (10)
Lindblad, Peter (8)
Stensjö, Karin (7)
Akermark, B. (6)
Högblom, Joakim (6)
Sun, Licheng C. (5)
Berggren, Gustav (5)
Abrahamsson, M. (4)
Anderlund, Magnus F. (4)
Cardona, Tanai, 1983 ... (4)
Johansson, Olof (3)
Eriksson, Lars (3)
Sundström, Villy (3)
Hammarstrom, L (3)
Borgström, Magnus (3)
Mamedov, Fikret (3)
Li, Xin (3)
Martensson, J (3)
Aro, Eva-Mari (3)
Polivka, Tomas (3)
Anderlund, Magnus (3)
Ho, Felix M. (3)
Battchikova, Natalia (3)
Land, Henrik (2)
Magnuson, Anders (2)
Abrahamsson, Maria (2)
Bergquist, Jonas (2)
Abrahamsson, Malin (2)
Berglund, Helena (2)
Agervald, Åsa (2)
Hermansson, Ann (2)
Shi, Wei (2)
Weihe, Högni (2)
Hofer, Anders (2)
Kamwendo, Kitty (2)
Krassen, Henning (2)
Berglund, Sigrid (2)
Feyziyev, Yashar (2)
Pan, Jingxi (2)
Lomoth, R. (2)
Shaikh, Nizamuddin (2)
Tamm, M. (2)
Zhang, Pengpeng (2)
Cardona, Tanai (2)
visa färre...
Lärosäte
Uppsala universitet (53)
Lunds universitet (17)
Stockholms universitet (11)
Kungliga Tekniska Högskolan (6)
Umeå universitet (3)
Örebro universitet (2)
visa fler...
Karlstads universitet (2)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (57)
Odefinierat språk (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (44)
Medicin och hälsovetenskap (5)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy