SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahlin Denny) "

Sökning: WFRF:(Mahlin Denny)

  • Resultat 1-37 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alhalaweh, Amjad, et al. (författare)
  • Computational predictions of glass-forming ability and crystallization tendency of drug molecules
  • 2014
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 11:9, s. 3123-3132
  • Tidskriftsartikel (refereegranskat)abstract
    • Amorphization is an attractive formulation technique for drugs suffering from poor aqueous solubility as a result of their high lattice energy. Computational models that can predict the material properties associated with amorphization, such as glass-forming ability (GFA) and crystallization behavior in the dry state, would be a time-saving, cost-effective, and material-sparing approach compared to traditional experimental procedures. This article presents predictive models of these properties developed using support vector machine (SVM) algorithm. The GFA and crystallization tendency were investigated by melt-quenching 131 drug molecules in situ using differential scanning calorimetry. The SVM algorithm was used to develop computational models based on calculated molecular descriptors. The analyses confirmed the previously suggested cutoff molecular weight (MW) of 300 for glass-formers, and also clarified the extent to which MW can be used to predict the GFA of compounds with MW < 300. The topological equivalent of Grav3_3D, which is related to molecular size and shape, was a better descriptor than MW for GFA; it was able to accurately predict 86% of the data set regardless of MW. The potential for crystallization was predicted using molecular descriptors reflecting Hückel pi atomic charges and the number of hydrogen bond acceptors. The models developed could be used in the early drug development stage to indicate whether amorphization would be a suitable formulation strategy for improving the dissolution and/or apparent solubility of poorly soluble compounds.
  •  
2.
  • Alhalaweh, Amjad, et al. (författare)
  • Physical stability of drugs after storage above and below the glass transition temperature : Relationship to glass-forming ability
  • 2015
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 495:1, s. 312-317
  • Tidskriftsartikel (refereegranskat)abstract
    • Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (T-g) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [ 18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12 h at temperatures 20 degrees C above or below the T-g. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20 degrees C below the T-g. Fourteen of the Class II compounds crystallized when stored above the T-g whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e. g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the T-g. The use of a large dataset revealed that molecular features related to aromaticity and pi-pi interactions reduce the inherent physical stability of amorphous drugs.
  •  
3.
  • Alzghoul, Ahmad, et al. (författare)
  • Experimental and Computational Prediction of Glass Transition Temperature of Drugs
  • 2014
  • Ingår i: JOURNAL OF CHEMICAL INFORMATION AND MODELING. - : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 54:12, s. 3396-3403
  • Tidskriftsartikel (refereegranskat)abstract
    • Glass transition temperature (T-g) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between T-g and melting temperature (T-m) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of T-g were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on T-m predicted T-g with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict T-g of drug-like molecules with high accuracy were developed. If T-m is available, a simple linear regression can be used to predict T-g. However, the results also suggest that support vector regression and calculated molecular descriptors can predict T-g with equal accuracy, already before compound synthesis.
  •  
4.
  •  
5.
  • Edueng, Khadijah, et al. (författare)
  • Long-term physical (in)stability of spray-dried amorphous drugs: relationship with glass-forming ability and physicochemical properties
  • 2019
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 11:9
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.
  •  
6.
  • Edueng, Khadijah, et al. (författare)
  • Mechanism-based selection of stabilization strategy for amorphous formulations : Insights into crystallization pathways
  • 2017
  • Ingår i: Journal of Controlled Release. - : ELSEVIER SCIENCE BV. - 0168-3659 .- 1873-4995. ; 256, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed a step-by-step experimental protocol using differential scanning calorimetry (DSC), dynamic vapour sorption (DVS), polarized light microscopy (PLM) and a small-scale dissolution apparatus (mu DISS Profiler) to investigate the mechanism (solid-to-solid or solution-mediated) by which crystallization of amorphous drugs occurs upon dissolution. This protocol then guided how to stabilize the amorphous formulation. Indapamide, metolazone, glibenclamide and glipizide were selected as model drugs and HPMC (Pharmacoat 606) and PVP (K30) as stabilizing polymers. Spray-dried amorphous indapamide, metolazone and glibenclamide crystallized via solution-mediated nucleation while glipizide suffered from solid-to-solid crystallization. The addition of 0.001%-0.01% (w/v) HPMC into the dissolution medium successfully prevented the crystallization of supersaturated solutions of indapamide and metolazone whereas it only reduced the crystallization rate for glibenclamide. Amorphous solid dispersion (ASD) formulation of glipizide and PVP K30, at a ratio of 50:50% (w/w) reduced but did not completely eliminate the solid-to-solid crystallization of glipizide even though the overall dissolution rate was enhanced both in the absence and presence of HPMC. Raman spectroscopy indicated the formation of a glipizide polymorph in the dissolution medium with higher solubility than the stable polymorph. As a complementary technique, molecular dynamics (MD) simulations of indapamide and glibenclamide with HPMC was performed. It was revealed that hydrogen bonding patterns of the two drugs with HPMC differed significantly, suggesting that hydrogen bonding may play a role in the greater stabilizing effect on supersaturation of indapamide, compared to glibenclamide.
  •  
7.
  • Edueng, Khadijah (författare)
  • Molecular Mechanisms Influencing the Performance of Amorphous Formulations for Poorly Water-Soluble Drugs
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Crystallisation is a concern for amorphous formulation because it compromises the solubility-enhancing benefit gained from amorphisation. Traditionally, amorphous formulation had been designed primarily based on trial-and-error approach. The success rate for amorphous formulation is unimpressive, due to a poor understanding of the formulation itself, especially with regard to its crystallisation behaviour. Therefore, this thesis aimed to propose a strategic approach for rational design of amorphous formulations, as opposed to the trial-and-error approach. This can be achieved by understanding what drives the crystallisation of amorphous drug, and when and how the amorphous drug crystallises. The information can guide the selection of drugs, excipients and preparation method to achieve amorphous formulations with favourable features.In the first part of the thesis, a systematic protocol was proposed to identify mechanisms via which crystallisation takes place when amorphous drug is dissolved. The stabilisation strategy of supersaturation produced upon dissolution of amorphous drug was then recommended depending on the crystallisation mechanisms. A molecular dynamics (MD) simulations was used to understand drug-polymer interaction during supersaturation. It was revealed that hydrogen bond interaction is an important in stabilising supersaturation. The factors affecting glass-forming ability and long-term physical stability such as preparation method and humidity were then highlighted in the second study. A follow-up study was performed to elucidate the potential complications in using a standardised differential scanning calorimetry to classify promiscuous glass formers into any specific glass-forming ability/glass stability class. In the subsequent study, the effect of physical aging and/or crystallisation of amorphous drugs during storage on supersaturation potential was addressed. It was shown that, minor crystallisation of amorphous drug upon storage did not have a significant impact on the supersaturation potential during dissolution. Instead, the crystallisation pathway of the amorphous drug during dissolution plays a more important role in determining the supersaturation behaviour of some drugs. Finally, the impact of (i) drug loading on physical stability, supersaturation, drug/polymer miscibility, and (ii) the physical aging and/or crystallisation upon storage on supersaturation potential of spray-dried solid dispersions with HPMC-AS were discussed in the last study. It was observed that the effect of drug loading on physical stability and supersaturation, and the effect of physical aging and/or crystallisation during storage on supersaturation potential is highly drug-dependent. Similarly, the stabilisation effect of HPMC-AS varied across model drugs, drug loadings and crystallisation pathways (i.e. in solid or during dissolution). The Flory-Huggins interaction parameter calculated using MD simulations revealed good miscibility between the drugs and HPMC-AS at drug loadings investigated. In the presence of water molecules, various structural organizations of the drugs and HPMC-AS complexes were observed. Taken together, this thesis provides an improved understanding of crystallisation behaviour of amorphous formulations, which is useful to guide a rational design of amorphous formulations.
  •  
8.
  • Edueng, Khadijah, et al. (författare)
  • Pharmaceutical Profiling and Molecular Dynamics Simulations Reveal Crystallization Effects in Amorphous Formulations
  • 2021
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier. - 0378-5173 .- 1873-3476. ; 613
  • Tidskriftsartikel (refereegranskat)abstract
    • Robust and reliable in vivo performance of medicines based on amorphous solid dispersions (ASDs) depend on maintenance of physical stability and efficient supersaturation. However, molecular drivers of these two kinetic processes are poorly understood. Here we used molecular dynamics (MD) simulations coupled with experimental assessments to explore supersaturation, nucleation, and crystal growth. The effect of drug loading on physical stability and supersaturation potential was highly drug specific. Storage under humid conditions influenced crystallization, but also resulted in morphological changes and particle fusion. This led to increased particle size, which significantly reduced dissolution rate. MD simulations identified the importance of nano-compartmentalization in the crystallization rate of the ASDs. Nucleation during storage did not inherently compromise the ASD. Rather, the poorer performance resulted from a combination of properties of the compound, nanostructures formed in the formulation, and crystallization.
  •  
9.
  • Edueng, Khadijah, et al. (författare)
  • Supersaturation Potential of Amorphous Active Pharmaceutical Ingredients after Long-Term Storage
  • 2019
  • Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 24:15
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the effect of physical aging and/or crystallization on the supersaturation potential and crystallization kinetics of amorphous active pharmaceutical ingredients (APIs). Spray-dried, fully amorphous indapamide, metolazone, glibenclamide, hydrocortisone, hydrochlorothiazide, ketoconazole, and sulfathiazole were used as model APIs. The parameters used to assess the supersaturation potential and crystallization kinetics were the maximum supersaturation concentration (Cmax,app), the area under the curve (AUC), and the crystallization rate constant (k). These were compared for freshly spray-dried and aged/crystallized samples. Aged samples were stored at 75% relative humidity for 168 days (6 months) or until they were completely crystallized, whichever came first. The solid-state changes were monitored with differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. Supersaturation potential and crystallization kinetics were investigated using a tenfold supersaturation ratio compared to the thermodynamic solubility using the µDISS Profiler. The physically aged indapamide and metolazone and the minimally crystallized glibenclamide and hydrocortisone did not show significant differences in their Cmax,app and AUC when compared to the freshly spray-dried samples. Ketoconazole, with a crystalline content of 23%, reduced its Cmax,app and AUC by 50%, with Cmax,app being the same as the crystalline solubility. The AUC of aged metolazone, one of the two compounds that remained completely amorphous after storage, significantly improved as the crystallization kinetics significantly decreased. Glibenclamide improved the most in its supersaturation potential from amorphization. The study also revealed that, besides solid-state crystallization during storage, crystallization during dissolution and its corresponding pathway may significantly compromise the supersaturation potential of fully amorphous APIs.
  •  
10.
  •  
11.
  • Edueng, Khadijah, et al. (författare)
  • The Need for Restructuring the Disordered Science of Amorphous Drug Formulations
  • 2017
  • Ingår i: Pharmaceutical Research. - : SPRINGER/PLENUM PUBLISHERS. - 0724-8741 .- 1573-904X. ; 34:9, s. 1754-1772
  • Forskningsöversikt (refereegranskat)abstract
    • The alarming numbers of poorly soluble discovery compounds have centered the efforts towards finding strategies to improve the solubility. One of the attractive approaches to enhance solubility is via amorphization despite the stability issue associated with it. Although the number of amorphous-based research reports has increased tremendously after year 2000, little is known on the current research practice in designing amorphous formulation and how it has changed after the concept of solid dispersion was first introduced decades ago. In this review we try to answer the following questions: What model compounds and excipients have been used in amorphous-based research? How were these two components selected and prepared? What methods have been used to assess the performance of amorphous formulation? What methodology have evolved and/or been standardized since amorphous-based formulation was first introduced and to what extent have we embraced on new methods? Is the extent of research mirrored in the number of marketed amorphous drug products? We have summarized the history and evolution of amorphous formulation and discuss the current status of amorphous formulation-related research practice. We also explore the potential uses of old experimental methods and how they can be used in tandem with computational tools in designing amorphous formulation more efficiently than the traditional trial-and-error approach.
  •  
12.
  • Fichtner, Frauke, et al. (författare)
  • Effect of surface energy on powder compactibility
  • 2008
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 25:12, s. 2750-9
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The influence of surface energy on the compactibility of lactose particles has been investigated. MATERIALS AND METHODS: Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. RESULTS: All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. CONCLUSION: The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.
  •  
13.
  •  
14.
  • Frenning, Göran, et al. (författare)
  • Spectral analysis of force fluctuations during probe penetration into cohesive powders
  • 2008
  • Ingår i: Powder Technology. - : Elsevier BV. - 0032-5910 .- 1873-328X. ; 187:1, s. 62-67
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate force fluctuations during probe penetration into cohesive powders consisting of ∼5 μm lactose particles with varying surfaceproperties prepared by spray drying. The results obtained for the more cohesive powders were remarkably similar to those previously reported fororders of magnitude larger noncohesive particles. For the less cohesive powders, the spectral densities were instead found to exhibit two distinctpower-law regions. Furthermore, the spectra were found to be independent of the geometry of the penetrating probe and dimensions of the diecavity. These findings suggest that the response is dominated by particle aggregate or agglomerate movement for the more cohesive powders,whereas the behaviour of the less cohesive ones is consistent with a response dominated by relatively weak force chains, with the fluctuations resulting from the recurring creation and collapse of jammed states being damped for length scales N0.1 mm.
  •  
15.
  • Hellrup, Joel, 1983-, et al. (författare)
  • Confinement of Amorphous Lactose in Pores formed upon Co-Spray-Drying with Nanoparticles
  • 2017
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 106:1, s. 322-330
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This study aims at investigating factors influencing humidity induced recrystallization of amorphous lactose, produced by co-spray-drying with particles of cellulose nanocrystals (CNC) or sodium montmorillonite (Na-MMT). In particular, the focus is on how the nanoparticle shape and surface properties influence the nano- to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray-drying. Solid-state transformations were analyzed at 60-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/CNC and lactose/Na-MMT nanocomposites was lowered at nanofiller contents higher than 60% and were stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined within upon co-spray-drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites.
  •  
16.
  • Hellrup, Joel, et al. (författare)
  • Humidity sorption of lactose/sodium montmorillonite nanocomposites
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding of water sorption is of high importance in materials science as water may change materials properties promoting degradation, relaxations, or recrystallization. In this study, we investigated the humidity sorption in co-spray-dried lactose/sodium montmorillonite nanocomposites with varying lactose loading with the aim to increase the knowledge of the water sorption in this type of materials. It was demonstrated that the intercalation of lactose in the Na‑MMT clay decreased hygroscopicity of the composite despite high water affinity of both materials. As the cations in interlayer space of montmorillonite play an essential role in water sorption in the clay, we gained the molecular level understanding of Na+ interactions with lactose molecules and clay surface in the nanocomposites with molecular dynamic simulations and 23Na solid-state NMR. In conclusion, we demonstrated that the decreased hygroscopicity of the materials can be explained by interactions of lactose with the Na+ and the clay surfaces in the MMT interlayer space of lactose/Na-MMT nanocomposites.
  •  
17.
  • Hellrup, Joel, et al. (författare)
  • Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying
  • 2015
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 104:11, s. 3760-3769
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose.
  •  
18.
  • Hellrup, Joel, et al. (författare)
  • Pharmaceutical micro-particles give amorphous sucrose higher physical stability
  • 2011
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 409:1-2, s. 96-103
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to explore how pharmaceutical micro-sized filler particles affect the amorphous stability of sucrose in sucrose/filler particle composites produced by freeze-drying. Focus was put on the filler particles' properties crystallinity, hygroscopicity, hydrophobicity, and surface area, and their influence on physical stability of the amorphous phase. The micro-sized filler particles were examined with Blaine permeametry, gas adsorption, pycnometry, gravimetric vapour sorption, X-ray diffraction, and light microscopy before composites of sucrose and micro-sized filler particles were prepared by freeze-drying. The stability of the composites was examined with X-ray diffraction, differential scanning calorimetry (DSC), and microcalorimetry. All composites were amorphous and showed higher stability compared to pure amorphous sucrose, which was evident from a delay in heat and moisture-induced crystallization. However, calcium carbonate and oxazepam micro-sized filler particles lost their ability to stabilize the amorphous sucrose when exposed to humidity. The dry glass transition temperature (T-g) was higher for the composites, indicating the stabilization was mediated by a reduced molecular mobility of the amorphous phase.
  •  
19.
  • Hellrup, Joel, 1983- (författare)
  • Pharmaceutical Nanocomposites : Structure–Mobility–Functionality Relationships in the Amorphous State
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Amorphous materials are found in pharmaceutical formulations both as excipients and active ingredients. Indeed, these formulations are becoming an essential strategy for incorporating drugs into well-performing solid dosage forms. However, there is an unmet need of better understanding of the microstructure and component interactions in amorphous formulations to be able to design materials with improved functionalities. The aim of this thesis is to give deepened knowledge about structure-mobility-functionality relationships in amorphous for-mulations by studying composites produced from sugars and filler particles. The structure, the mobility, and physical stability of the composite materials were studied using calorimetry, X-ray diffraction, microscopy, spectroscopy, and molecular dynamics simulations. Further, the moisture sorption of the composites was determined with dynamic vapor sorption. The compression mechanics of the composites was evaluated with compression analysis.It was demonstrated that fillers change the overall properties of the amorphous material. Specifically, the physical stability of the composite was by far improved compared to the amorphous sugar alone. This effect was pronounced for formulations with 60 wt% filler content or more. Amorphous lactose that normally recrystallizes within a few minutes upon humidity exposure, could withstand recrystallization for several months at 60% RH in composites with 80 wt% cellulose nanocrystals (CNC) or sodium montmorillonite (Na-MMT). The increased physical stability of the amorphous sugars was related to intra-particle confinement in extra-particle voids formed by the fillers and to immobilization of the amorphous phase at the surface of the fillers. Also, the composite formation led to increased particle hardness for the lactose/CNC and the lactose/Na-MMT nanocomposites. The largest effect on particle hardness was seen with 40-60 wt% nanofiller and could be related to skeleton formation of the nanofillers within the composite particles. The hygroscopicity for the lactose/Na-MMT nanocomposites decreased as much as 47% compared to ideal simple mixtures of the neat components. The nanofillers did not influence the water sorption capacity in the amorphous domains; however, lactose (intercalated into Na-MMT) interacted with the sodium ions in the interlayer space which led to the lowered hygroscopicity of this phase.The thesis advanced the knowledge of the microstructure of amorphous pharmaceutical com-posites and its relationship with pharmaceutical functionalities. It also presented new approaches for stabilizing the amorphous state by using fillers. The concept illustrated here might be used to understand similar phenomena of stabilization of amorphous formulations.
  •  
20.
  • Hellrup, Joel, et al. (författare)
  • Powder compression mechanics of spray-dried lactose nanocomposites
  • 2017
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 518:1-2, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite, and fumed silica, which led to lower micron sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle sizes of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated increased yield pressure compared with the physical mixtures indicating increased particle hardness. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation applying compression analysis proved to be a valuable tool for mechanical evaluation for this type of materials unless they demonstrate particle rearrangement throughout the whole compression profile.
  •  
21.
  • Hellrup, Joel, 1983-, et al. (författare)
  • Production and characterization of aluminium oxide nanoshells on spray dried lactose
  • 2017
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 529:1-2, s. 116-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic layer deposition (ALD) enables deposition of dense nanometer thick metal oxide nanoshells on powder particles with precise thickness control. This leads to products with low weight fraction coating, also when depositing on nano- or micron sized powder particles. This study aimed at investigating the aluminium oxide nanoshell thickness required to prevent moisture sorption. The nanoshells were produced with ALD on spray-dried lactose, which is amorphous and extremely hygroscopic. The particles were studied with dynamic vapor sorption between 0 and 50% RH, light scattering, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and polarized light microscopy. The ALD did not induce any recrystallization of the amorphous lactose. The dynamic vapor sorption indicated that the moisture sorption was almost completely inhibited by the nanoshell. Neat amorphous lactose rapidly recrystallized upon moisture exposure. However, only ca. 15% of the amorphous lactose particles recrystallized of a sample with 9% (by weight) aluminium oxide nanoshell at storage for six months upon 75% RH/40 degrees C, which indicate that the moisture sorption was completely inhibited in the majority of the particles. In conclusion, the aluminium oxide nanoshells prevented moisture sorption and dramatically improved the long term physical stability of amorphous lactose. This shows the potential of the ALD-technique to protect drug microparticles.
  •  
22.
  • Hellrup, Joel, et al. (författare)
  • Structure and mobility of lactose in lactose/sodium montmorillonite nanocomposites
  • 2016
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 32:49, s. 13214-13225
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims at investigating the molecular level organization and molecular mobility in montmorillonite nanocomposites with the uncharged organic low-molecular-weight compound lactose commonly used in pharmaceutical drug delivery, food technology, and flavoring. Nanocomposites were prepared under slow and fast drying conditions, attained by drying at ambient conditions and by spray-drying, respectively. A detailed structural investigation was performed with modulated differential scanning calorimetry, powder X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, scanning electron microscopy, microcalorimetry, and molecular dynamics simulations. The lactose was intercalated in the sodium montmorillonite interlayer space regardless of the clay content, drying rate, or humidity exposure. Although, the spray-drying resulted in higher proportion of intercalated lactose compared with the drying under ambient conditions, nonintercalated lactose was present at 20 wt % lactose content and above. This indicates limitations in maximum loading capacity of nonionic organic substances into the montmorillonite interlayer space. Furthermore, a fraction of the intercalated lactose in the co-spray-dried nanocomposites diffused out from the clay interlayer space upon humidity exposure. Also, the lactose in the nanocomposites demonstrated higher molecular mobility than that of neat amorphous lactose. This study provides a foundation for understanding functional properties of lactose/Na-MMT nanocomposites, such as loading capacity and physical stability.
  •  
23.
  • Mahlin, Denny, et al. (författare)
  • A novel powder sample holder for the determination of glass transition temperatures by DMA
  • 2009
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 371:1-2, s. 120-125
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of a new sample holder for dynamic mechanical analysis (DMA) as a means to characterise the Tg of powdered hydroxypropyl methyl cellulose (HPMC) has been investigated. A sample holder was constructed consisting of a rectangular stainless steel container and a lid engineered to fit exactly within the walls of the container when clamped within a TA instruments Q800 DMA in dual cantilever configuration. Physical mixtures of HPMC (E4M) and aluminium oxide powders were placed in the holder and subjected to oscillating strains (1 Hz, 10 Hz and 100 Hz) whilst heated at 3 degrees C/min. The storage and loss modulus signals showed a large reduction in the mechanical strength above 150 degrees C which was attributed to a glass transition. Optimal experimental parameters were determined using a design of experiment procedure and by analysing the frequency dependence of Tg in Arrhenius plots. The parameters were a clamping pressure of 62 kPa, a mass ratio of 0.2 HPMC in aluminium oxide, and a loading mass of either 120 mg or 180 mg. At 1 Hz, a Tg of 177+/-1.2 degrees C (n=6) for powdered HPMC was obtained. In conclusion, the new powder holder was capable of measuring the Tg of pharmaceutical powders and a simple optimization protocol was established, useful in further applications of the DMA powder holder.
  •  
24.
  •  
25.
  •  
26.
  • Mahlin, Denny, et al. (författare)
  • Early drug development predictions of glass-forming ability and physical stability of drugs
  • 2013
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 49:2, s. 323-332
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate if rapidly measured physical properties can predict glass-forming ability and glass stability of drug compounds. A series of 50 structurally diverse drug molecules were studied with respect to glass-forming ability and, for glass-formers (n = 24), the physical stability upon 1 month of storage was determined. Spray-drying and melt-cooling were used to produce the amorphous material and the solid state was analysed by Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction. Thermal properties and molecular weight (Mw) were used to develop predictive models of (i) glass-forming ability and (ii) physical stability. In total, the glass-forming ability was correctly predicted for 90% of the drugs from their Mw alone. As a rule of thumb, drugs with Mw greater than 300 g/mole are expected to be transformed to its amorphous state by using standard process technology. Glass transition temperature and Mw predicted the physical stability upon storage correctly for 78% of the glass-forming compounds. A strong sigmoidal relationship (R-2 of 0.96) was identified between crystallization temperature and stability. These findings have the potential to rationalize decisions schemes for utilizing and developing amorphous formulations, through early predictions of glass-forming ability from Mw and physical stability from simple DSC characterization.
  •  
27.
  •  
28.
  • Mahlin, Denny, 1973- (författare)
  • Phase Transformations in Solid Pharmaceutical Materials Studied by AFM, ESCA, DSC and SAXS
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mixing excipients is a common way to produce pharmaceutical materials with suitable properties for drug formulation. An understanding of the basic mechanisms involved in the formation and transformation of the structures of solid state mixtures is crucial if one is to be able to produce materials with the desired properties in a reliable way. In the first part of the thesis, the atomic force microscopy (AFM) technique was used to visualise the re-crystallisation of spray-dried amorphous particles comprised of lactose and PVP. The transformation was quantified on a single particle level and analysed with a common kinetic model, the JMAK-equation. The way in which the PVP was incorporated into the particles and the impact this had on their physical stability on exposure to increasing levels of humidity was investigated. The amount and, to a certain extent, the molecular weight of the PVP affected the moisture induced crystallisation of the particles. The inhibition was further discussed in terms of nucleation and growth. In the second part of the thesis, the formation of phases in solid dispersions of monoolein (MO) in PEGs was studied by the use of SAXS and DSC. Upon solidification of a melt, the components phase separated, resulting in a PEG-rich phase and an MO phase. MO was intercalated into the amorphous domains of the lamellar structure of PEG. A second MO phase appeared in the mixtures where the average molecular weight of PEG was 1500 and 4000 g/mol. It was hypothesised that this second phase was formed in conjunction with the expulsion of MO as the PEG unfolded. This thesis describes the application of two relatively unexplored solid state techniques on two different solid mixtures of pharmaceutical interest and, in so doing, contributes to the knowledge of phase formation and transformations in the solid state.
  •  
29.
  •  
30.
  • Mahlin, Denny, et al. (författare)
  • The influence of PVP incorporation on moisture-induced surface crystallization of amorphous spray-dried lactose particles
  • 2006
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 321:1-2, s. 78-85
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that atomic force microscopy (AFM) may be an appropriate method for characterisation of the re-crystallization of amorphous particles. In this study, spray-dried composite particles consisting of lactose and polyvinyl pyrrolidon (PVP) were characterised by AFM and electron spectroscopy for chemical analysis (ESCA), and their response on increasing the relative humidity (RH) was investigated. The PVP content in the particles used was 0, 5 or 25 wt.% of either PVP K 17 or PVP K90. All composite particles were found to be enriched with PVP at the surface. The incorporation of PVP in the particles influenced the way the particles responded to an increase in RH. The specific RH interval in which the surface of the particles smoothened and the RH where crystallization could be detected, increased with an increase in the amount and molecular weight of the PVP in the particles. The crystallization kinetics of single particles was analysed with AFM and by utilising the JMAK equation. The rate constant for this transformation increased in an exponential manner with increasing RH. Furthermore, above the RH needed for the crystallization to occur, the exponential increase in the crystallization rate was larger for particles with higher polymer content which indicates that the stabilising effect decreases as the water content in the particles becomes higher. In this study we report a method for determination of crystallization kinetics on single composite particles, which is valuable when evaluating the effect of stabilisers in amorphous powders.
  •  
31.
  • Mahlin, Denny, et al. (författare)
  • Toward In Silico Prediction of Glass-Forming Ability from Molecular Structure Alone : A Screening Tool in Early Drug Development
  • 2011
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 8:2, s. 498-506
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel computational tool which predicts the glass-forming ability of drug compounds solely from their molecular structure. Compounds which show solid-state limited aqueous solubility were selected, and their glass-forming ability was determined upon spray-drying, melt-quenching and mechanical activation. The solids produced were analyzed by differential scanning calorimetry (DSC) and powder X-ray diffraction. Compounds becoming at least partially amorphous on processing were classified as glass-formers, whereas those remaining crystalline regardless of the process method were classified as non-glass-forming compounds. A predictive model of the glass-forming ability, designed to separate between these two classes, was developed through the use of partial least-squares projection to latent structure discriminant analysis (PLS-DA) and calculated molecular descriptors. In total, ten of the 16 compounds were determined experimentally to be good glass-formers and the PLS-DA model correctly sorted 15 of the compounds using four molecular descriptors only. An external test set was predicted with an accuracy of 75%, and, hence, the PLS-DA model developed was shown to be applicable for the identification of compounds that have the potential to be designed as amorphous formulations. The model suggests that larger molecules with a low number of benzene rings, low level of molecular symmetry, branched carbon skeletons and electronegative atoms have the ability to form a glass. To conclude, we have developed a predictive, transparent and interpretable computational model for the identification of drug molecules capable of being glass-formers. The model allows an assessment of amorphization as a formulation strategy in the early drug development process, and can be applied before compound synthesis.
  •  
32.
  • Osanloo, Daniel, et al. (författare)
  • Formulation factors affecting foam properties during vacuum foam-drying
  • 2024
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier B.V.. - 0378-5173 .- 1873-3476. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper explores how vacuum foam-drying of a protein is influenced by formulation parameters by investigating the foam structure, physical properties of the foam, and the stability of the protein. Recombinant human bile salt-stimulated lipase was used as a model of a protein drug. The stability of the lipase was evaluated through activity measurements. Two disaccharides (sucrose and trehalose), strongly tending to an amorphous form, were used as matrix formers, and the physical properties were assessed through residual water content, glass transition temperature, and crystalline state. Moreover, some formulations included surfactants with different sizes and structures of the head group. The alkyl chain length was kept constant to only investigate the impact of the surfactant head group, in the presence of the lipase, on the foamability and surface coverage of the lipase. The study demonstrated that the lipase allowed for a dry, solid foam with a foam overrun of up to 2600 %. The wall thickness of the dry, solid foam was estimated to be 20–50 µm. Clear differences between sucrose and trehalose as matrix former were identified. The lipase showed no tendency to lose activity because of the drying and rehydration, despite a proportion of the lipase covering the surfaces of the dry material. 
  •  
33.
  • Schoug, Åsa, et al. (författare)
  • Differential effects of polymers PVP90 and Ficoll400 on storage stability and viability of Lactobacillus coryniformis Si3 freeze-dried in sucrose
  • 2010
  • Ingår i: Journal of Applied Microbiology. - : Oxford University Press (OUP). - 1364-5072 .- 1365-2672. ; 108:3, s. 1032-1040
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: To investigate the effect of freeze-dried Lactobacillus coryniformis Si3 on storage stability by adding polymers to sucrose-based formulations and to examine the relationship between amorphous matrix stability and cell viability. METHODS AND RESULTS: The resistance to moisture-induced sucrose crystallization and effects on the glass transition temperature (Tg) by the addition of polymers to the formulation were determined by different calorimetric techniques. Both polymers increased the amorphous matrix stability compared to the control, and poly(vinyl)pyrrolidone K90 was more effective in increasing amorphous stability than Ficoll 400. The viability of Lact. coryniformis Si3 after storage was investigated by plate counts following exposure to different moisture levels and temperatures for up to 3 months. The polymers enhanced the cellular viability to different degrees, dependent upon polymer and storage condition. CONCLUSIONS: Polymers can be used to enhance the stability of freeze-dried Lact. coryniformis Si3 products, but cell viability and matrix stability do not always correlate. The general rule of thumb to keep a highly amorphous product 50 degrees below its Tg for overall stability seemed to apply for this type of bacterial products. We showed that by combining thermal analysis with plate counts, it was possible to determine storage conditions where cell viability and matrix stability were kept high. SIGNIFICANCE AND IMPACT OF THE STUDY: The results will aid in the rational formulation design and proper determination of storage conditions for freeze-dried and highly amorphous lactic acid bacteria formulations. We propose a hypothesis of reason for different stabilizing effects on the cells by the different polymers based on our findings and previous findings.
  •  
34.
  • Unga, Johan, 1976, et al. (författare)
  • Understanding polymer-lipid solid dispersions-The properties of incorporated lipids govern the crystallisation behaviour of PEG
  • 2010
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 386:1-2, s. 61-70
  • Tidskriftsartikel (refereegranskat)abstract
    • A deeper insight into the crystallisation process of semi-crystalline polymers during formation of solid dispersions is crucial to improve control of product qualities in drug formulation. In this study we used PEG 4000 with 12 different lipids as a model system to study the effect that incorporated components may have on the crystallisation of the polymer. The lipids were melted with PEG 4000 and the crystallisation of the polymer studied with differential scanning calorimetry (DSC) and small angle X-ray diffraction (SAXD). PEG 4000 can crystallise into lamellar structures with either folded or fully extended polymer chains. All lipids increased the fraction of the folded form and lowered the crystallisation temperatures. Some lipids were incorporated to a high extent into the amorphous domains of the PEG lamellae and thereby swelling the structure, which also resulted in a high degree of chain folding. Partial least squares (PLS) modelling indicated that small hydrophilic lipids increased the folding of PEG and that large non-polar lipids retarded the unfolding during secondary crystallisation. This work shows that there is a large difference in the behaviour of PEG depending on lipid added. Differences are explained in terms of molecular properties for the lipids, demonstrated by the use of PLS modelling to describe the behaviour of PEG solid dispersions. (C) 2009 Elsevier B.V. All rights reserved.
  •  
35.
  • Wessman, Per, et al. (författare)
  • Impact of matrix properties on survival of freeze-dried bacteria
  • 2011
  • Ingår i: Journal of the Science of Food and Agriculture. - : Wiley. - 0022-5142 .- 1097-0010. ; 91:14, s. 2518-2528
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Disaccharides are in general first choice as formulation compounds when freezedrying microorganisms. Although polysaccharides and other biopolymers are considered too large to stabilize and interact with cell components in the same beneficial way as disaccharides, polymers have been reported to support cell survival. In the present study we compare the efficiency of sucrose, the polymers Ficoll, hydroxyethylcellulose, hydroxypropylmethylcellulose and polyvinylalcohol to support survival of three bacterial strains during freeze-drying. The initial osmotic conditions were adjusted to be similar for all formulations. Formulation characterization was used to interpret the impact that different compound properties had on cell survival. Results: Despite differences in molecular size, both sucrose and the sucrose based polymer Ficoll supported cell survival after freeze-drying equally well. All formulations became amorphous upon dehydration. Scanning electron microscopy and X-ray diffraction data showed that the discerned differences in structure of the dry formulations had little impact on the survival rates. The capability of the polymers to support cell survival correlated with the surface activity of the polymers in a similar way for all investigated bacterial strains. Conclusion: Polymer-based formulations can support cell survival as effectively as disaccharides if formulation properties of importance for maintaining cell viability are identified and controlled.
  •  
36.
  • Wessman, Per, et al. (författare)
  • Structural effects caused by spray- and freeze-drying of liposomes and bilayer disks
  • 2010
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 99:4, s. 2032-2048
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryo-TEM and dynamic light scattering was used to investigate morphological changes induced by spray- and freeze-drying of liposomes and nanosized bilayer disks composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DSPE-PEG) from lactose solution. Particular focus was put on the identification of structural alterations that risk influencing the performance of liposomes and bilayer disks as carriers for protein and peptide drugs. Significant changes in the lipid aggregate structure and/or size was noted upon dehydration. Uni-lamellar liposomes tended to shrink in size and become bi-lamellar as a consequence of the drying process. The same transformation was observed upon deliberate establishment of a lactose gradient over the membranes of liposomes in solution. A mechanism based on an osmotically driven invagination of the liposomes is proposed to explain the change from uni- to bi-lamellar structures. PEGylation promoted formation of larger liposomes during spray-drying, and had a similar, but less pronounced, effect also during freeze-drying. The observed structural changes may have important consequences for the bioavailability of protein/peptide drugs bound to, or embedded in, the liposome membranes. The radius of bilayer disks increased upon both spray- and freeze-drying, but the drying procedure did not change the open single-bilayer structure of the disks.
  •  
37.
  • Önneby, Karin, et al. (författare)
  • Effects of di- and polysaccharide formulations and storage conditions on survival of freeze-dried Sphingobium sp.
  • 2013
  • Ingår i: World Journal of Microbiology & Biotechnology. - : Springer Science and Business Media LLC. - 0959-3993 .- 1573-0972. ; 29:8, s. 1399-1408
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we have compared the ability of the organic polymers Ficoll and hydroxyethylcellulose (HEC) and the disaccharides sucrose and trehalose to support cell survival during freeze-drying and subsequent storage of a gram-negative Sphingobium sp. In addition to determination of viability rates, cell integrity was evaluated using lipid peroxidation and RNA quality assays for the different storage conditions and formulation compositions. All formulations resulted in high initial cell survival rates after freeze-drying. However, the disaccharide formulations were superior to the polymer-based formulations in supporting cell survival during storage with the exception of Ficoll that upon storage under vacuum yielded bacterial survival rates equal to that of sucrose. Storage in the presence of both oxygen and moisture was detrimental for bacterial survival in all formulations tested, however, lipid peroxidation or RNA damages were not the controlling mechanisms for cell death in this system. The ability of Ficoll and HEC to support cell survival during freeze-drying show that organic polymers, expected to lack the water replacing capability of e.g. disaccharides, can successfully be used as lyoprotectants. For storage under vacuum conditions we suggest that the intracellular amount of sugars (i.e. trehalose), or other protective native cell components, is sufficient for a basic protection inside the bacteria cell and that the amorphous state is the most important aspect of the formulation excipient. However, when exposed to oxygen and moisture during storage this protection is not sufficient to prevent cell degeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-37 av 37
Typ av publikation
tidskriftsartikel (27)
annan publikation (6)
doktorsavhandling (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Mahlin, Denny (35)
Alderborn, Göran (8)
Bergström, Christel, ... (8)
Edueng, Khadijah (8)
Bergström, Christel ... (5)
Engström, Sven (5)
visa fler...
Hellrup, Joel (5)
Berggren, Jonas (3)
Frenning, Göran (3)
Alhalaweh, Amjad (3)
Alzghoul, Ahmad (3)
Håkansson, Sebastian (3)
Wessman, Per (3)
Hellrup, Joel, 1983- (3)
Gelius, Ulrik (2)
Gråsjö, Johan, 1962- (2)
Welch, Ken (2)
Holmboe, Michael (2)
Kabedev, Aleksei (2)
Ekdahl, Alyssa (2)
Baumann, John (2)
Mudie, Deanna (2)
Fichtner, Frauke (2)
Nartowski, Karol P. (2)
Johansson, Anders (1)
Edwards, Katarina (1)
Pizzul, Leticia (1)
Bergenståhl, Björn (1)
Kessler, Vadim (1)
Larsson, Per (1)
Matsson, Pär (1)
Akhtar, Sultan (1)
Kaialy, Waseem (1)
Leifer, Klaus, 1965- (1)
Gaisford, Simon (1)
Millqvist-Fureby, An ... (1)
Alderborn, Göran, Pr ... (1)
Kish, Laszlo B. (1)
Engström, Sven, 1951 (1)
Schoug, Åsa (1)
Bjerketorp, Joakim (1)
Hageman, Michael, Va ... (1)
Nylander, Olivia (1)
Thakrani, Manish (1)
Morgen, Michael (1)
Unga, Johan (1)
Nordström, Josefina (1)
Önneby, Karin (1)
Khimyak, Yaroslav Z. (1)
Mahlin, Denny, Senio ... (1)
visa färre...
Lärosäte
Uppsala universitet (36)
Sveriges Lantbruksuniversitet (3)
Chalmers tekniska högskola (2)
RISE (2)
Umeå universitet (1)
Lunds universitet (1)
Språk
Engelska (33)
Odefinierat språk (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (13)
Lantbruksvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy