SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maia Filipe) "

Sökning: WFRF:(Maia Filipe)

  • Resultat 1-50 av 97
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Konold, Patrick E., et al. (författare)
  • 3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10, s. 662-670
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.
  •  
2.
  • Konold, Patrick, et al. (författare)
  • Microsecond time-resolved X-ray scattering by utilizing MHz repetition rate at second-generation XFELs
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Detecting microsecond structural perturbations in biomolecules has wide relevance inbiology, chemistry, and medicine. Here, we show how MHz repetition rates at X-ray freeelectron lasers (XFELs) can be used to produce microsecond time-series of proteinscattering with exceptionally low noise levels of 0.001%. We demonstrate the approach byderiving new mechanistic insight into Jɑ helix unfolding of a Light-Oxygen-Voltage (LOV)photosensory domain. This time-resolved acquisition strategy is easy to implement andwidely applicable for direct observation of structural dynamics of many biochemicalprocesses. 
  •  
3.
  • Pádua, Diana, et al. (författare)
  • A SOX2 reporter system identifies gastric cancer stem-like cells sensitive to monensin
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastric cancer remains a serious health burden with few therapeutic options. Therefore, the recognition of cancer stem cells (CSCs) as seeds of the tumorigenic process makes them a prime therapeutic target. Knowing that the transcription factors SOX2 and OCT4 promote stemness, our approach was to isolate stem-like cells in human gastric cancer cell lines using a traceable reporter system based on SOX2/OCT4 activity (SORE6-GFP). Cells transduced with the SORE6-GFP reporter system were sorted into SORE6+ and SORE6– cell populations, and their biological behavior characterized. SORE6+ cells were enriched for SOX2 and exhibited CSC features, including a greater ability to proliferate and form gastrospheres in non-adherent conditions, a larger in vivo tumor initiating capability, and increased resistance to 5-fluorouracil (5-FU) treatment. The overexpression and knockdown of SOX2 revealed a crucial role of SOX2 in cell proliferation and drug resistance. By combining the reporter system with a high-throughput screening of pharmacologically active small molecules we identified monensin, an ionophore antibiotic, displaying selective toxicity to SORE6+ cells. The ability of SORE6-GFP reporter system to recognize cancer stem-like cells facilitates our understanding of gastric CSC biology and serves as a platform for the identification of powerful therapeutics for targeting gastric CSCs.
  •  
4.
  • Pádua, Diana, et al. (författare)
  • High-Throughput Drug Screening Revealed That Ciclopirox Olamine Can Engender Gastric Cancer Stem-like Cells
  • 2023
  • Ingår i: Cancers. - 2072-6694. ; 15:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer stem cells (CSCs) are relevant therapeutic targets for cancer treatment. Still, the molecular circuits behind CSC characteristics are not fully understood. The low number of CSCs can sometimes be an obstacle to carrying out assays that explore their properties. Thus, increasing CSC numbers via small molecule-mediated cellular reprogramming appears to be a valid alternative tool. Using the SORE6-GFP reporter system embedded in gastric non-CSCs (SORE6−), we performed a high-throughput image-based drug screen with 1200 small molecules to identify compounds capable of converting SORE6− to SORE6+ (CSCs). Here, we report that the antifungal agent ciclopirox olamine (CPX), a potential candidate for drug repurposing in cancer treatment, is able to reprogram gastric non-CSCs into cancer stem-like cells via activation of SOX2 expression and increased expression of C-MYC, HIF-1α, KLF4, and HMGA1. This reprogramming depends on the CPX concentration and treatment duration. CPX can also induce cellular senescence and the metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis. We also disclose that the mechanism underlying the cellular reprogramming is similar to that of cobalt chloride (CoCl2), a hypoxia-mimetic agent.
  •  
5.
  • Wiedorn, Max O., et al. (författare)
  • Megahertz serial crystallography
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
6.
  •  
7.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
8.
  • Ayyer, Kartik, et al. (författare)
  • 3D diffractive imaging of nanoparticle ensembles using an x-ray laser
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:1, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nano meter biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
  •  
9.
  • Barty, Anton, et al. (författare)
  • Cheetah : software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data
  • 2014
  • Ingår i: Journal of applied crystallography. - 0021-8898 .- 1600-5767. ; 47, s. 1118-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License.
  •  
10.
  • Bellisario, Alfredo (författare)
  • Deep learning assisted phase retrieval and computational methods in coherent diffractive imaging
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, advances in Artificial Intelligence and experimental techniques have revolutionized the field of structural biology. X-ray crystallography and Cryo-EM have provided unprecedented insights into the structures of biomolecules, while the unexpected success of AlphaFold has opened up new avenues of investigation. However, studying the dynamics of proteins at high resolution remains a significant obstacle, especially for fast dynamics. Single-particle imaging (SPI) or Flash X-ray Imaging (FXI) is an emerging technique that may enable the mapping of the conformational landscape of biological molecules at high resolution and fast time scale. This thesis discusses the potential of SPI/FXI, its challenges, recent experimental successes, and the advancements driving its development. In particular, machine learning and neural networks could play a vital role in fostering data analysis and improving SPI/FXI data processing. In Paper I, we discuss the problem of noise and detector masks in collecting FXI data. I simulated a dataset of diffraction patterns and used it to train a Convolutional Neural Network (U-Net) to restore data by denoising and filling in detector masks. As a natural continuation of this work, I trained another machine learning model in Paper II to estimate 2D protein densities from diffraction intensities. In the final chapter, corresponding to Paper III, we discuss another experimental method, time-resolved Small Angle X-ray Scattering (SAXS), and a new algorithm recently developed for SAXS data, the DENsity from Solution Scattering (DENSS) algorithm. I discuss the potential of DENSS in time-resolved SAXS and its application for structural fitting of AsLOV2, a Light-Oxygen-Voltage (LOV) protein domain from Avena sativa.
  •  
11.
  • Bellisario, Alfredo, et al. (författare)
  • Noise reduction and mask removal neural network for X-ray single-particle imaging
  • 2022
  • Ingår i: Journal of applied crystallography. - : International Union of Crystallography (IUCr). - 0021-8898 .- 1600-5767. ; 55, s. 122-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers could enable X-ray imaging of single biological macro-molecules and the study of protein dynamics, paving the way for a powerful new imaging tool in structural biology, but a low signal-to-noise ratio and missing regions in the detectors, colloquially termed 'masks', affect data collection and hamper real-time evaluation of experimental data. In this article, the challenges posed by noise and masks are tackled by introducing a neural network pipeline that aims to restore diffraction intensities. For training and testing of the model, a data set of diffraction patterns was simulated from 10 900 different proteins with molecular weights within the range of 10-100 kDa and collected at a photon energy of 8 keV. The method is compared with a simple low-pass filtering algorithm based on autocorrelation constraints. The results show an improvement in the mean-squared error of roughly two orders of magnitude in the presence of masks compared with the noisy data. The algorithm was also tested at increasing mask width, leading to the conclusion that demasking can achieve good results when the mask is smaller than half of the central speckle of the pattern. The results highlight the competitiveness of this model for data processing and the feasibility of restoring diffraction intensities from unknown structures in real time using deep learning methods. Finally, an example is shown of this preprocessing making orientation recovery more reliable, especially for data sets containing very few patterns, using the expansion-maximization-compression algorithm.
  •  
12.
  • Bergh, Magnus, et al. (författare)
  • Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction
  • 2008
  • Ingår i: Quarterly reviews of biophysics (Print). - 0033-5835 .- 1469-8994. ; 41:3-4, s. 181-204
  • Forskningsöversikt (refereegranskat)abstract
    • Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis or the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed, The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0.75 and 1.5 nm and at fluences of 10(11)-10(12) photonS mu M (2) in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.
  •  
13.
  • Bielecki, Johan, 1982, et al. (författare)
  • Electrospray sample injection for single-particle imaging with x-ray lasers
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
  •  
14.
  • Bielecki, Johan, et al. (författare)
  • Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources
  • 2020
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron lasers (XFELs) now routinely produce millijoule level pulses of x-ray photons with tens of femtoseconds duration. Such x-ray intensities gave rise to the idea that weakly scattering particles-perhaps single biomolecules or viruses-could be investigated free of radiation damage. Here, we examine elements from the past decade of so-called single particle imaging with hard XFELs. We look at the progress made to date and identify some future possible directions for the field. In particular, we summarize the presently achieved resolutions as well as identifying the bottlenecks and enabling technologies to future resolution improvement, which in turn enables application to samples of scientific interest.
  •  
15.
  • Björling, Alexander, et al. (författare)
  • Three-Dimensional Coherent Bragg Imaging of Rotating Nanoparticles
  • 2020
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 125:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Bragg coherent diffraction imaging is a powerful strain imaging tool, often limited by beam-induced sample instability for small particles and high power densities. Here, we devise and validate an adapted diffraction volume assembly algorithm, capable of recovering three-dimensional datasets from particles undergoing uncontrolled and unknown rotations. We apply the method to gold nanoparticles which rotate under the influence of a focused coherent x-ray beam, retrieving their three-dimensional shapes and strain fields. The results show that the sample instability problem can be overcome, enabling the use of fourth generation synchrotron sources for Bragg coherent diffraction imaging to their full potential.
  •  
16.
  • Bogan, Michael J, et al. (författare)
  • Single particle X-ray diffractive imaging
  • 2008
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 8:1, s. 310-6
  • Tidskriftsartikel (refereegranskat)abstract
    • In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.
  •  
17.
  • Caleman, Carl, et al. (författare)
  • Nanocrystal imaging using intense and ultrashort X-ray pulses
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances, and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals.
  •  
18.
  • Caleman, Carl, et al. (författare)
  • On the Feasibility of Nanocrystal Imaging Using Intense and Ultrashort X-ray Pulses
  • 2011
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 5:1, s. 139-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses Such pulses may allow the imaging of single molecules, clusters; Or nanoparticles: Coherent flash Imaging Will also open up new avenues for structural studies on nano- and microcrystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for ultrafast single shot nanocrystallography diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals. Nanocrystallography using ultrafast X-ray pulses has the potential to open up a new route in protein crystallography to solve atomic structures of many systems that remain Inaccessible using conventional X-ray sources.
  •  
19.
  • Chapman, Henry N., et al. (författare)
  • Femtosecond diffractive imaging with a soft-X-ray free-electron laser
  • 2006
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 2:12, s. 839-843
  • Tidskriftsartikel (refereegranskat)abstract
    • Theory predicts(1-4) that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 x 10(13) W cm(-2) pulse, containing 10(12) photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling(5-9), shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one(10).
  •  
20.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
21.
  • Commer, Michael, et al. (författare)
  • Iterative Krylov solution methods for geophysical electromagnetic simulations on throughput-oriented processing units
  • 2012
  • Ingår i: The international journal of high performance computing applications. - : SAGE Publications. - 1094-3420 .- 1741-2846. ; 26:4, s. 378-385
  • Tidskriftsartikel (refereegranskat)abstract
    • Many geo-scientific applications involve boundary value problems arising in simulating electrostatic and electromagnetic fields for geophysical prospecting and subsurface imaging of electrical resistivity. Modeling complex geological media with three-dimensional finite-difference grids gives rise to large sparse linear systems of equations. For such systems, we have implemented three common iterative Krylov solution methods on graphics processing units and compared their performance with parallel host-based versions. The benchmarks show that the device efficiency improves with increasing grid sizes. Limitations are currently given by the device memory resources.
  •  
22.
  • Daurer, Benedikt J. (författare)
  • Algorithms for Coherent Diffractive Imaging with X-ray Lasers
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X-ray ptychography.While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges. FXI becomes even more demanding when approaching shorter wavelengths to allow subnanometre resolution imaging. We described one of the first FXI experiments using hard X-rays and characterized the most critical components of such an experiment, namely the properties of X-ray focus, sample delivery and detectors. Based on our findings, we discussed experimental and computational strategies for FXI to overcome its current difficulties and reach its full potential. We deposited the data in the Coherent X-ray Database (CXIDB) and made our data analysis code available in a public repository. We developed algorithms targeted towards the needs of FXI experiments and implemented a software package which enables the analysis of diffraction data in real time.X-ray ptychography has developed into a very useful tool for quantitative imaging of complex materials and has found applications in many areas. However, it involves a computational reconstruction step which can be slow. Therefore, we developed a fast GPU-based ptychographic solver and combined it with a framework for real-time data processing which already starts the ptychographic reconstruction process while data is still being collected. This provides immediate feedback to the user and allows high-throughput ptychographic imaging.Finally, we have used ptychographic imaging as a method to study the wavefront of a focused XFEL beam under typical FXI conditions. We are convinced that this work on developing strategies and algorithms for FXI and ptychography is a valuable contribution to the development of coherent diffractive imaging. 
  •  
23.
  • Daurer, Benedikt J., et al. (författare)
  • Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
  • 2017
  • Ingår i: IUCrJ. - : INT UNION CRYSTALLOGRAPHY. - 2052-2525. ; 4, s. 251-262
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of similar to 40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from similar to 35 to similar to 300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 * 10(12) photons per mu m(2) per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.
  •  
24.
  •  
25.
  • Daurer, Benedikt J., et al. (författare)
  • Nanosurveyor : a framework for real-time data processing
  • 2017
  • Ingår i: Advanced Structural and Chemical Imaging. - : Springer Science and Business Media LLC. - 2198-0926. ; 3:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The ever improving brightness of accelerator based sources is enabling novel observations and discov-eries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality.Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis.Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the micro-scope operators
  •  
26.
  • Daurer, Benedikt J., et al. (författare)
  • Ptychographic wavefront characterization for single-particle imaging at x-ray lasers
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:4, s. 551-562
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-characterized wavefront is important for many x-ray free-electron laser (XFEL) experiments, especially for single-particle imaging (SPI), where individual biomolecules randomly sample a nanometer region of highly focused femtosecond pulses. We demonstrate high-resolution multiple-plane wavefront imaging of an ensemble of XFEL pulses, focused by Kirkpatrick–Baez mirrors, based on mixed-state ptychography, an approach letting us infer and reduce experimental sources of instability. From the recovered wavefront profiles, we show that while local photon fluence correction is crucial and possible for SPI, a small diversity of phase tilts likely has no impact. Our detailed characterization will aid interpretation of data from past and future SPI experiments and provides a basis for further improvements to experimental design and reconstruction algorithms.
  •  
27.
  • Daurer, Benedikt J, et al. (författare)
  • Wavefront sensing of individual XFEL pulses using ptychography
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The characterization of the wavefront dynamics is important for many X-ray free-electron laser (XFEL) experiments, in particular for coherent diffractive imaging (CDI), as the reconstructed image is always the product of the incoming wavefront with the object. An accurate understanding of the wavefront is also important for any experiment wishing to achieve peak power densities, making use of the tightest possible focal spots. With the use of ptychography we demonstrate high-resolution imaging of the Linac Coherent Light Source (LCLS) beam focused at the endstation for Atomic, Molecular and Optical (AMO) experiments, including its phase and intensity at every plane along its propagation axis, for each individual pulse. Using a mixed-state approach, we have reconstructed the most dominant beam components that constitute an ensemble of pulses, and from the reconstructed components determined their respective contribution in each of the individual pulses. This enabled us to obtain complete wavefront information about each individual pulse. We hope that our findings aid interpretation of data from past and future LCLS experiments and we propose this method to be used routinely for XFEL beam diagnostics. 
  •  
28.
  • Ekeberg, Tomas, 1983-, et al. (författare)
  • Data requirements for single-particle diffractive imaging
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Single-shot diffractive imaging with ultra-short and very intense coherent X-ray pulses has become a routine experimental technique at new free-electron-laser facilities. Extension to three-dimensional imaging requires many diffraction pat- terns from identical objects captured in different orientations. These can then be combined into a full three-dimensional Fourier transform of the object. The ori- entation of the particle intercepted by the pulsed X-ray beam is usually unknown. This makes it hard to predict the number of patterns required to fully cover the Fourier space. In this paper we provide formulae to estimate the number of expo- sures required to achieve a given coverage of Fourier space as a function of parti- cle size, resolution and shot noise. 
  •  
29.
  • Ekeberg, Tomas, 1983-, et al. (författare)
  • Observation of a single protein by ultrafast X-ray diffraction
  • 2024
  • Ingår i: Light. - : Springer Nature. - 2095-5545 .- 2047-7538. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
  •  
30.
  • Ekeberg, Tomas, et al. (författare)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
31.
  •  
32.
  • Ekeberg, Tomas, 1983-, et al. (författare)
  • Three-dimensional structure determination with an X-ray laser
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Three-dimensional structure determination of a non-crystalline virus has been achieved from a set of randomly oriented continuous diffraction patterns captured with an X-ray laser. Intense, ultra-short X-ray pulses intercepted a beam of single mimivirus particles, producing single particle X-ray diffraction patterns that are assembled into a three-dimensional amplitude distribution based on statistical consistency. Phases are directly retrieved from the assembled Fourier distribution to synthesize a three-dimensional image. The resulting electron density reveals a pseudo-icosahedral asymmetric virion structure with a compartmentalized interior, within which the DNA genome occupies only about a fifth of the volume enclosed by the capsid. Additional electron microscopy data indicate the genome has a chromatin-like fiber structure that has not previously been observed in a virus. 
  •  
33.
  • Farmand, Maryam, et al. (författare)
  • Near-edge X-ray refraction fine structure microscopy
  • 2017
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 110:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro- microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can see nearly five-fold improved spatial resolution on resonance.
  •  
34.
  • Ge, X., et al. (författare)
  • Impact of wave front and coherence optimization in coherent diffractive imaging
  • 2013
  • Ingår i: Optics Express. - 1094-4087. ; 21:9, s. 11441-11447
  • Tidskriftsartikel (refereegranskat)abstract
    • We present single shot nanoscale imaging using a table-top femtosecond soft X-ray laser harmonic source at a wavelength of 32 nm. We show that the phase retrieval process in coherent diffractive imaging critically depends on beam quality. Coherence and image fidelity are measured from single-shot coherent diffraction patterns of isolated nano-patterned slits. Impact of flux, wave front and coherence of the soft X-ray beam on the phase retrieval process and the image quality are discussed. After beam improvements, a final image reconstruction is presented with a spatial resolution of 78 nm (half period) in a single 20 fs laser harmonic shot. 
  •  
35.
  • Gorkhover, Tais, et al. (författare)
  • Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
  • 2018
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 12:3, s. 150-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast X-ray imaging on individual fragile specimens such as aerosols 1 , metastable particles 2 , superfluid quantum systems 3 and live biospecimens 4 provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined 4,5 . Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.
  •  
36.
  • Hantke, Max F., et al. (författare)
  • A data set from flash X-ray imaging of carboxysomes
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.
  •  
37.
  • Hantke, Max Felix, 1984- (författare)
  • Coherent Diffractive Imaging with X-ray Lasers
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The newly emerging technology of X-ray free-electron lasers (XFELs) has the potential to revolutionise molecular imaging. XFELs generate very intense X-ray pulses and predictions suggest that they may be used for structure determination to atomic resolution even for single molecules. XFELs produce femtosecond pulses that outrun processes of radiation damage and permit the study of structures at room temperature and of structural dynamics.While the first demonstrations of flash X-ray diffractive imaging (FXI) on biological particles were encouraging, they also revealed technical challenges. In this work we demonstrated how some of these challenges can be overcome. We exemplified, with heterogeneous cell organelles, how tens of thousands of FXI diffraction patterns can be collected, sorted, and analysed in an automatic data processing pipeline. We improved  image resolution and reduced problems with missing data. We validated, described, and deposited the experimental data in the Coherent X-ray Imaging Data Bank.We demonstrated that aerosol injection can be used to collect FXI data at high hit ratios and with low background. We reduced problems with non-volatile sample contaminants by decreasing aerosol droplet sizes from ~1000 nm to ~150 nm. We achieved this by adapting an electrospray aerosoliser to the Uppsala sample injector. Mie scattering imaging was used as a diagnostic tool to measure positions, sizes, and velocities of individual injected particles.XFEL experiments generate large amounts of data at high rates. Preparation, execution, and data analysis of these experiments benefits from specialised software. In this work we present new open-source software tools that facilitates prediction, online-monitoring, display, and pre-processing of XFEL diffraction data.We hope that this work is a valuable contribution in the quest of transitioning FXI from its first experimental demonstration into a technique that fulfills its potentials.
  •  
38.
  • Hantke, Max F., et al. (författare)
  • Condor : a simulation tool for flash X-ray imaging
  • 2016
  • Ingår i: Journal of applied crystallography. - 0021-8898 .- 1600-5767. ; 49, s. 1356-1362
  • Forskningsöversikt (refereegranskat)abstract
    • Flash X-ray imaging has the potential to determine structures down to molecular resolution without the need for crystallization. The ability to accurately predict the diffraction signal and to identify the optimal experimental configuration within the limits of the instrument is important for successful data collection. This article introduces Condor, an open-source simulation tool to predict X-ray far-field scattering amplitudes of isolated particles for customized experimental designs and samples, which the user defines by an atomic or a refractive index model. The software enables researchers to test whether their envisaged imaging experiment is feasible, and to optimize critical parameters for reaching the best possible result. It also aims to support researchers who intend to create or advance reconstruction algorithms by simulating realistic test data. Condor is designed to be easy to use and can be either installed as a Python package or used from its web interface (http://lmb.icm.uu.se/condor). X-ray free-electron lasers have high running costs and beam time at these facilities is precious. Data quality can be substantially improved by using simulations to guide the experimental design and simplify data analysis.
  •  
39.
  • Hantke, Max F., et al. (författare)
  • High-throughput imaging of heterogeneous cell organelles with an X-ray laser
  • 2014
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 8:12, s. 943-949
  • Tidskriftsartikel (refereegranskat)abstract
    • We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min with the Linac Coherent Light Source running at 120 Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.
  •  
40.
  • Hantke, Max Felix, et al. (författare)
  • Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams
  • 2018
  • Ingår i: IUCrJ. - 2052-2525. ; 5, s. 673-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
  •  
41.
  • Ho, Phay J., et al. (författare)
  • The role of transient resonances for ultra-fast imaging of single sucrose nanoclusters
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments. X-ray free electron lasers provide high photon flux to explore single particle diffraction imaging of biological samples. Here the authors present dynamic electronic structure calculations and benchmark them to single-particle XFEL diffraction data of sucrose clusters to predict optimal single-shot imaging conditions.
  •  
42.
  • Johansson, Linda C, 1983, et al. (författare)
  • Lipidic phase membrane protein serial femtosecond crystallography.
  • 2012
  • Ingår i: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 9:3, s. 263-265
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
  •  
43.
  • Kassemeyer, Stephan, et al. (författare)
  • Femtosecond free-electron laser x-ray diffraction data sets for algorithm development
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:4, s. 4149-4158
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
  •  
44.
  • Kirian, Richard A., et al. (författare)
  • Structure-factor analysis of femtosecond micro-diffraction patterns from protein nanocrystals
  • 2011
  • Ingår i: Acta Crystallographica Section A. - 0108-7673 .- 1600-5724. ; 67:2, s. 131-140
  • Tidskriftsartikel (refereegranskat)abstract
    • A complete set of structure factors has been extracted from hundreds of thousands of femtosecond single-shot X-ray microdiffraction patterns taken from randomly oriented nanocrystals. The method of Monte Carlo integration over crystallite size and orientation was applied to experimental data from Photosystem I nanocrystals. This arrives at structure factors from many partial reflections without prior knowledge of the particle-size distribution. The data were collected at the Linac Coherent Light Source (the first hard-X-ray laser user facility), to which was fitted a hydrated protein nanocrystal injector jet, according to the method of serial crystallography. The data are single 'still' diffraction snapshots, each from a different nanocrystal with sizes ranging between 100 nm and 2 mu m, so the angular width of Bragg peaks was dominated by crystal-size effects. These results were compared with single-crystal data recorded from large crystals of Photosystem I at the Advanced Light Source and the quality of the data was found to be similar. The implications for improving the efficiency of data collection by allowing the use of very small crystals, for radiation-damage reduction and for time-resolved diffraction studies at room temperature are discussed.
  •  
45.
  • Koopmann, Rudolf, et al. (författare)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
46.
  • Kurta, Ruslan P., et al. (författare)
  • Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 119:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
  •  
47.
  • Li, Haoyuan, et al. (författare)
  • Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source
  • 2020
  • Ingår i: Scientific Data. - : NATURE RESEARCH. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 mu m x 1.7 mu m full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
  •  
48.
  •  
49.
  • Liu, Jing (författare)
  • Towards Fast and Robust Algorithms in Flash X-ray single-particle Imaging
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Modern X-ray Free Electron Laser (XFEL) technology provides the possibility to acquire a large number of diffraction patterns from individual biological nano-particles, including proteins, viruses, and DNA. Ideally, the collected data frames are high-quality single-particle diffraction patterns. However, unfortunately, the raw dataset is noisy and also contains patterns with scatterings from multiple particles, contaminated particles, etc. The data complexity and the massive volumes of raw data make pattern selection a time-consuming and challenge task. Further, X-rays interact with particles at random and the captured patterns are the 2D intensities of the scattered waves, i.e. we cannot observe the particle orientations and the phase information from the 2D diffraction patterns. To reconstruct 2D diffraction patterns into 3D structures of the desired particle, we need a sufficiently large single-particle-pattern dataset. The computational methodology for this reconstruction task is still under development and in need of an improved understanding of the algorithmic uncertainties.In this thesis, we tackle some of the challenges to obtain 3D structures of sample molecules from single-particle diffraction patterns. First, we have developed two classification methods to select single-particle diffraction patterns that are similar to provided templates. Second, we have accelerated the 3D reconstruction procedures by distributing the computations among Graphics Processing Units (GPUs) and by proposing an adaptive discretization of 3D space. Third, to better understand the uncertainties of the 3D reconstruction procedure, we have evaluated the impact of the different sources of resolution-limiting factors and introduced a practically applicable computational methodology in the form of bootstrap procedures for assessing the reconstruction uncertainty. These technologies form a data-analysis pipeline for recovering 3D structures from the raw X-ray single-particle data, which also analyzes the uncertainties. With the experimental developments of the X-ray single-particle technology, we expect that the data volumes will be increasing sharply, and hence, we believe such a computational pipeline will be critical to retrieve particle structures in the achievable resolution.
  •  
50.
  • Loh, N. D., et al. (författare)
  • Cryptotomography : Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:22, s. 225501-1-225501-5
  • Tidskriftsartikel (refereegranskat)abstract
    • We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the expansion-maximization-compression framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 97
Typ av publikation
tidskriftsartikel (77)
doktorsavhandling (7)
annan publikation (6)
forskningsöversikt (3)
konferensbidrag (2)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (17)
populärvet., debatt m.m. (2)
Författare/redaktör
Maia, Filipe R. N. C ... (65)
Hajdu, Janos (45)
Barty, Anton (36)
Svenda, Martin (30)
Ekeberg, Tomas (29)
Chapman, Henry N. (29)
visa fler...
Timneanu, Nicusor (27)
Aquila, Andrew (22)
Bielecki, Johan (22)
Bostedt, Christoph (22)
Seibert, M Marvin (20)
Marchesini, Stefano (20)
Andreasson, Jakob (19)
Hartmann, Robert (18)
Kirian, Richard A. (18)
Bajt, Saša (18)
Rudenko, Artem (17)
Rolles, Daniel (17)
Kimmel, Nils (17)
Martin, Andrew V. (16)
Liang, Mengning (16)
Foucar, Lutz (15)
Gumprecht, Lars (15)
Graafsma, Heinz (14)
Bogan, Michael J. (14)
Andersson, Inger (14)
Rudek, Benedikt (14)
White, Thomas A. (14)
DePonte, Daniel P. (14)
Epp, Sascha W. (14)
Holl, Peter (14)
Schulz, Joachim (14)
Erk, Benjamin (13)
Hantke, Max (13)
Barthelmess, Miriam (13)
Bozek, John D. (13)
Frank, Matthias (13)
Lomb, Lukas (13)
Sierra, Raymond G. (12)
Hirsemann, Helmut (12)
Shoeman, Robert L (12)
Iwan, Bianca (12)
Nettelblad, Carl (12)
Hunter, Mark S. (12)
Fromme, Petra (12)
Fleckenstein, Holger (12)
Reich, Christian (12)
Schlichting, Ilme (12)
Soltau, Heike (12)
Ullrich, Joachim (12)
visa färre...
Lärosäte
Uppsala universitet (92)
Kungliga Tekniska Högskolan (14)
Chalmers tekniska högskola (7)
Göteborgs universitet (4)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
visa fler...
Mittuniversitetet (2)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (97)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (79)
Medicin och hälsovetenskap (7)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy