SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maity Partha) "

Sökning: WFRF:(Maity Partha)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biradar, Bhimaraya R., et al. (författare)
  • Fabrication of supercapacitor electrode material using carbon derived from waste printer cartridge
  • 2024
  • Ingår i: Ionics (Kiel). - : SPRINGER HEIDELBERG. - 0947-7047 .- 1862-0760.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming recyclable materials into a suitable product is an important area of research nowadays. This report demonstrates that carbon material derived from waste printer cartridges can be exploited to fabricate electrochemical cells-particularly supercapacitors (SCs). SCs are electrochemical energy storage devices currently attracting much attention in the research community due to their salient features, such as cost-effectiveness, extended cycle stability, and durability. Here, we report the results of thoroughly examining the effects of acidic, basic, and neutral aqueous electrolytes on printer waste carbon electrode material in SC efficiency. In our work, the waste carbon collected from used printer cartridges shows a specific capacitance of 178.4 F/g with energy and power density of 24.77 Wh/kg and 999.68 W/kg, respectively, at 0.5 A/g current density in acidic (1 M H2SO4) electrolyte medium. Moreover, it exhibited very promising capacitance of 135.04 F/g and 87.04 F/g in basic (1 M LiOH) and neutral (1 M NaCl) electrolyte medium, respectively, at 0.8 A/g current density with considerably better cycle stability. In an acidic medium, printer waste carbon drives a DC motor for 1 min with a three-cell series arrangement. The properties of that waste carbon (extracted from the cartridges) are similar to high-rate activated carbon available commercially.
  •  
2.
  • Biradar, Bhimaraya R., et al. (författare)
  • High areal capacitance polyoxotungstate-reduced graphene oxide-based supercapacitors
  • 2023
  • Ingår i: Inorganic Chemistry Communications. - : ELSEVIER. - 1387-7003 .- 1879-0259. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • The modern lifestyle has driven the advent of high-power electronic gadgets to need high-efficiency energy storage devices. Towards that goal, reduced graphene oxide (rGO) mediated polyoxometalates (POMs) based electrode materials are increasingly showing promising performance for building efficient energy storage devices primarily due to their redox properties. In this report, the silicotungstate [K5[SiVW11O40]. nH2O (SiVW11) embedded rGO nanocomposites as electrode materials in supercapacitor applications were synthesized via chemical and hydrothermal methods. The synthesized nanocomposites were characterized by various techniques, such as Fourier-Transform-Infrared (FTIR) Spectroscopy, Powder X-ray Diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS), Thermogravimetric Analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) measurement. The nanocomposites electrochemical properties were examined by adopting a two-electrode setup with cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) in a 0.5 M H2SO4 electrolyte medium. The hydrothermally reduced graphene oxide (HrGO) nanocomposite exhibited a noticeable surge in areal capacitance of 377.4 mF/cm2 at a current density of 1.5 mA/cm2. The resulting composite had 52.4 & mu;Wh/cm2 and 1500 & mu;W/cm2 as energy and power density, respectively at 1.5 mA/cm2 current density. In addition, the capacitance retention is over 81% after 5000 cycles at a current density of 9 mA/ cm2. The highest specific power of 5000 & mu;W/cm2 was obtained at 5 mA/cm2 current density. On the other hand, chemically reduced graphene (CrGO) nanocomposite showed an areal capacitance of 277.2 mF/cm2 at the same current density. As a result, the SiVW11 clusters coupled with the rGO increase the areal capacitance of nanocomposites with exceptional electrical and mechanical stability. From an application standpoint, both composites were employed successfully for running a DC motor in a series cell connection.
  •  
3.
  • El-Zohry, Ahmed M., et al. (författare)
  • Ultrafast transient infrared spectroscopy for probing trapping states in hybrid perovskite films
  • 2022
  • Ingår i: Communications Chemistry. - : Springer Science and Business Media LLC. - 2399-3669. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the charge dynamics of perovskite materials is a crucial step to understand the outstanding performance of these materials in various fields. Herein, we utilize transient absorption in the mid-infrared region, where solely electron signatures in the conduction bands are monitored without external contributions from other dynamical species. Within the measured range of 4000 nm to 6000 nm (2500–1666 cm−1), the recombination and the trapping processes of the excited carriers could be easily monitored. Moreover, we reveal that within this spectral region the trapping process could be distinguished from recombination process, in which the iodide-based films show more tendencies to trap the excited electrons in comparison to the bromide-based derivatives. The trapping process was assigned due to the emission released in the mid-infrared region, while the traditional band-gap recombination process did not show such process. Various parameters have been tested such as film composition, excitation dependence and the probing wavelength. This study opens new frontiers for the transient mid-infrared absorption to assign the trapping process in perovskite films both qualitatively and quantitatively, along with the potential applications of perovskite films in the mid-IR region.
  •  
4.
  • Zheng, Xiaopeng, et al. (författare)
  • Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
  • 2020
  • Ingår i: NATURE ENERGY. - : Nature Publishing Group. - 2058-7546. ; 5, s. 131-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Inverted perovskite solar cells have attracted increasing attention because they have achieved long operating lifetimes. However, they have exhibited significantly inferior power conversion efficiencies compared to regular perovskite solar cells. Here we reduce this efficiency gap using a trace amount of surface-anchoring alkylamine ligands (AALs) with different chain lengths as grain and interface modifiers. We show that long-chain AALs added to the precursor solution suppress nonradiative carrier recombination and improve the optoelectronic properties of mixed-cation mixed-halide perovskite films. The resulting AAL surface-modified films exhibit a prominent (100) orientation and lower trap-state density as well as enhanced carrier mobilities and diffusion lengths. These translate into a certified stabilized power conversion efficiency of 22.3% (23.0% power conversion efficiency for lab-measured champion devices). The devices operate for over 1,000 h at the maximum power point under simulated AM1.5 illumination, without loss of efficiency. While perovskite solar cells with an inverted architecture hold great promise for operation stability, their power conversion efficiency lags behind that of conventional cells. Here, Zheng et al. achieve a certified 22.34% efficiency, exploiting alkylamine ligands as grain and interface modifiers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy