SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Makela Jaakko) "

Sökning: WFRF:(Makela Jaakko)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonen, Jaakko, et al. (författare)
  • A severe case of Puumala hantavirus infection successfully treated with bradykinin receptor antagonist icatibant
  • 2013
  • Ingår i: Scandinavian Journal of Infectious Diseases. - : Informa UK Limited. - 0036-5548 .- 1651-1980. ; 45:6, s. 494-496
  • Tidskriftsartikel (refereegranskat)abstract
    • A patient with severe capillary leakage syndrome caused by a Puumala hantavirus infection was treated with a single dose of icatibant, a bradykinin receptor antagonist, with a dramatic positive response. We suggest that this drug should be tested in a larger number of patients with severe hantavirus infection.
  •  
2.
  • Makela, Jaakko, et al. (författare)
  • Comparison of chemical, electronic, and optical properties of Mg-doped AlGaN
  • 2016
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:50, s. 28591-28597
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen, carbon, and oxygen are common unintentional impurities of Al(x)Ga(1−x)N crystals. This impurity structure and its interplay with Mg impurities in Al(x)Ga(1−x)N semiconductors are relevant to develop the p-type nitride crystals for various devices (e.g, LEDs, transistors, gas sensors) but are still unclear. Here we have investigated Mg-doped Al0.5Ga0.5N before and after postgrowth annealing with valence-band and core-level photoelectron spectroscopy, photoluminescence, and resistivity measurements. First, it is found that a surface part of the Al0.5Ga0.5N crystal is surprisingly inert with air and stable against air exposure-induced changes. Thus, the relatively surface-sensitive photoelectron spectroscopy measurements reflect in this case also the bulk crystal characteristics. The measurements reveal the presence of deep states up to 1 eV above valence-band maximum before and after the annealing and that oxygen and carbon occupy N lattice sites (i.e., ON and CN). The model where CN-induced acceptor states in the band gap participate in the blue emission (photoluminescence) is supported. Furthermore, the presented Mg 2p core-level spectra demonstrate that part of Mg atoms forms direct bond(s) with oxygen in the bulklike structure of Al0.5Ga0.5N and that the chemical environment of Mg atoms is much richer than was expected previously.
  •  
3.
  • Norrbo, Isabella, et al. (författare)
  • Mechanisms of Tenebrescence and Persistent Luminescence in Synthetic Hackmanite Na8Al6Si6O24(Cl,S)(2)
  • 2016
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 8:18, s. 11592-11602
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic hackmanites, Na8Al6Si6O24(Cl,S)(2), showing efficient purple tenebrescence and blue/white persistent luminescence were studied using different spectroscopic techniques to obtain a quantified view on the storage and release of optical energy in these materials. The persistent luminescence emitter was identified as impurity Ti3+ originating from the precursor materials used in the synthesis, and the energy storage for persistent luminescence was postulated to take place in oxygen vacancies within the aluminosilicate framework. Tenebrescence, on the other hand, was observed to function within the Na-4(Cl,S) entities located in the cavities of the aluminosilicate framework. The mechanism of persistent luminescence and tenebrescence in hackmanite is presented for the first time.
  •  
4.
  • Norrbo, Isabella, et al. (författare)
  • Solar UV index and UV dose determination with photochromic hackmanites : from the assessment of the fundamental properties to the device
  • 2018
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry (RSC). - 2051-6347 .- 2051-6355. ; 5:3, s. 569-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Extended exposure to sunlight or artificial UV sources is a major cause of serious skin and eye diseases such as cancer. There is thus a great need for convenient materials for the easy monitoring of UV doses. While organic photochromic molecules are tunable for responses under different wavelengths of UV radiation, they suffer from rather poor durability because the color changes involve drastic changes in molecular structure. Inorganic materials, on the other hand, are durable, but they have lacked tunability. Here, by combining computational and empirical data, we confirm the mechanism of coloration in the hackmanites, nature-based materials, and introduce a new technique called thermotenebrescence. With knowledge of the mechanism, we show that we can control and thus tune the energy of electronic states of synthetic hackmanites (Na,M)(8)Al6Si6O24(Cl,S)(2) so that their body color is sensitive to the solar UV index as well as UVA, UVB or UVC radiation levels. Finally, we demonstrate that it is possible to use images taken with an inexpensive cell phone to quantify the radiation dose or UV index. The hackmanite materials thus show great potential for use in portable healthcare both in everyday life and in laboratories.
  •  
5.
  • Tuominen, Marjukka, et al. (författare)
  • Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:10, s. 7060-7066
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 x 2) surface reconstruction, leading to a crystalline c(4 x 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 x 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 x 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 x 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 x 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy