SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maklin Jani) "

Sökning: WFRF:(Maklin Jani)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Halonen, Niina, et al. (författare)
  • Low-temperature growth of multi-walled carbon nanotubes by thermal CVD
  • 2011
  • Ingår i: Physica status solidi. B, Basic research. - Malden : Wiley-Blackwell. - 0370-1972 .- 1521-3951. ; 248:11, s. 2500-2503
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-temperature thermal chemical vapor deposition (thermal CVD) synthesis of multi-walled carbon nanotubes (MWCNTs) was studied using a large variety of different precursor compounds. Cyclopentene oxide, tetrahydrofuran, methanol, and xylene: methanol mixture as oxygen containing heteroatomic precursors, while xylene and acetylene as conventional hydrocarbon feedstocks were applied in the experiments. The catalytic activity of Co, Fe, Ni, and their bi-as well as tri-metallic combinations were tested for the reactions. Low-temperature CNT growth occurred at 400 degrees C when using bi-metallic Co-Fe and tri-metallic Ni-Co-Fe catalyst (on alumina) and methanol or acetylene as precursors. In the case of monometallic catalyst nanoparticles, only Co (both on alumina and on silica) was found to be active in the low temperature growth (below 500 degrees C) from oxygenates such as cyclopentene oxide and methanol. The structure and composition of the achieved MWCNTs products were studied by scanning and transmission electron microscopy (SEM and TEM) as well as by Raman and X-ray photoelectron spectroscopy (XPS) and by X-ray diffraction (XRD). The successful MWCNT growth below 500 degrees C is promising from the point of view of integrating MWCNT materials into existing IC fabrication technologies. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  •  
2.
  • Kukkola, Jarmo, et al. (författare)
  • Room temperature hydrogen sensors based on metal decorated WO3 nanowires
  • 2013
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 186, s. 90-95
  • Tidskriftsartikel (refereegranskat)abstract
    • The emerging hydrogen economy has created a demand for the development of improved hydrogen sensors operating at room temperature. In this work, we present hydrogen detectors based on metal decorated WO3 nanowires that were able to detect 1000 ppm of H-2, even at room temperature (30 degrees C), with relatively short recovery time and high sensitivity. The nanowires were synthesized by a hydrothermal process and decorated with PdO and PtOx nanoparticles by decomposition of Pd(acac)(2) and Pt(acac)(2) precursors. The gas responses were tested for H-2, NO, H2S and CO analyte gases in an air buffer at 150,200 and 250 degrees C (H-2 also at 30,70 and 130 degrees C).
  •  
3.
  • Toth, Geza, et al. (författare)
  • Thermal management of micro hotspots in electric components with carbon nanotubes
  • 2013
  • Ingår i: International Journal of Nanotechnology. - : InderScience Publishers. - 1475-7435 .- 1741-8151. ; 10:1-2, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The excellent thermal and electrical conductivity as well as the remarkable mechanical properties of Carbon Nanotubes (CNTs) all point towards an unbeatable and facile route towards replacing traditional thermal management materials, like copper, in the electronics industry. In spite of that, the technology is still suffering from considerable challenges. In order to realise an actual electronics, which uses CNTs for thermal management, inevitable trade-offs have to be made. Our work is focusing on proposing novel ideas and manufacturing techniques which show a reasonable potential and could justify the practicality of this technology. The paper is reporting on the recent results in hotspot removal by using tailored multi-layer chips and CNTs grown directly on the heat affected zone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy