SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Malczewska Malec Malgorzata) "

Search: WFRF:(Malczewska Malec Malgorzata)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Phillips, Catherine M., et al. (author)
  • Obesity and Body Fat Classification in the Metabolic Syndrome : Impact on Cardiometabolic Risk Metabotype
  • 2013
  • In: Obesity. - : Wiley. - 1930-7381 .- 1930-739X. ; 21:1, s. E154-E161
  • Journal article (peer-reviewed)abstract
    • Objective: Obesity is a key factor in the development of the metabolic syndrome (MetS), which is associated with increased cardiometabolic risk. We investigated whether obesity classification by BMI and body fat percentage (BF%) influences cardiometabolic profile and dietary responsiveness in 486 MetS subjects (LIPGENE dietary intervention study). Design and Methods: Anthropometric measures, markers of inflammation and glucose metabolism, lipid profiles, adhesion molecules, and hemostatic factors were determined at baseline and after 12 weeks of four dietary interventions (high saturated fat (SFA), high monounsaturated fat (MUFA), and two low fat high complex carbohydrate (LFHCC) diets, one supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs)). Results: About 39 and 87% of subjects classified as normal and overweight by BMI were obese according to their BF%. Individuals classified as obese by BMI (>= 30 kg/m(2)) and BF% (>= 25% (men) and >= 35% (women)) (OO, n = 284) had larger waist and hip measurements, higher BMI and were heavier (P < 0.001) than those classified as nonobese by BMI but obese by BF% (NOO, n = 92). OO individuals displayed a more proinflammatory (higher C reactive protein (CRP) and leptin), prothrombotic (higher plasminogen activator inhibitor-1 (PAI-1)), proatherogenic (higher leptin/adiponectin ratio) and more insulin resistant (higher HOMA-IR) metabolic profile relative to the NOO group (P < 0.001). Interestingly, tumor necrosis factor-alpha (TNF-alpha) concentrations were lower post-intervention in NOO individuals compared with OO subjects (P < 0.001). Conclusions: In conclusion, assessing BF% and BMI as part of a metabotype may help to identify individuals at greater cardiometabolic risk than BMI alone.
  •  
2.
  • Garcia-Rios, Antonio, et al. (author)
  • Genetic variations at the lipoprotein lipase gene influence plasma lipid concentrations and interact with plasma n-6 polyunsaturated fatty acids to modulate lipid metabolism
  • 2011
  • In: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 218:2, s. 416-422
  • Journal article (peer-reviewed)abstract
    • Objective: To investigate whether seven common single nucleotide polymorphisms (SNPs) at the lipoprotein lipase (LPL) locus interact with total plasma fatty acids to modulate plasma lipid metabolism in metabolic syndrome (MetS) patients. Methods: Plasma fatty acid composition, plasma lipid concentrations and LPL SNPs were determined in 452 subjects with the MetS in the European LIPGENE human study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX Study. Results: Triglycerides (TG) were lower, and HDL higher in the carriers of rs328 and rs1059611 in the SUVIMAX cohort (all P < 0.001), and these findings showed a similar, non-significant trend in LIPGENE cohort. In this last cohort, we found a gene-fatty acids interaction, as the carriers of the minor allele displayed a lower fasting TG and triglyceride rich lipoproteins-TG (TRL-TG) concentrations only when they had n-6 polyunsaturated fatty acids below the median (all P < 0.05). Moreover, subjects carrying the minor allele for rs328 SNP and with a low level of n-6 PUFA displayed higher nonesterified fatty acid (NEFA) plasma concentrations as compared with homozygous for the major allele (P = 0.034). Interestingly, the n-6 PUFA-dependent associations between those SNPs and TG metabolism were also replicated in subjects without MetS from the SU.VI.MAX cohort. Conclusion: Two genetic variations at the LPL gene (rs328 and rs1059611) influence plasma lipid concentrations and interact with plasma n-6 PUFA to modulate lipid metabolism. The knowledge of new genetic factors together with the understanding of these gene-nutrient interactions could help to a better knowledge of the pathogenesis in the MetS. 
  •  
3.
  • Perez-Martinez, Pablo, et al. (author)
  • Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome
  • 2011
  • In: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 93:5, s. 1136-1141
  • Journal article (peer-reviewed)abstract
    • Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic beta cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of beta cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials. gov as NCT00429195.
  •  
4.
  • Perez-Martinez, Pablo, et al. (author)
  • Glucokinase Regulatory Protein Genetic Variant Interacts with Omega-3 PUFA to Influence Insulin Resistance and Inflammation in Metabolic Syndrome
  • 2011
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:6, s. e20555-
  • Journal article (peer-reviewed)abstract
    • Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective: To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design: Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results: Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions: We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.
  •  
5.
  • Shaw, Danielle I, et al. (author)
  • LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries
  • 2009
  • In: British Journal of Nutrition. - 0007-1145 .- 1475-2662. ; 101:5, s. 750-759
  • Journal article (peer-reviewed)abstract
    • Controlled human intervention trials are required to confirm the hypothesis that dietary fat quality may influence insulin action. The aim was to develop a food-exchange model, suitable for use in free-living volunteers, to investigate the effects of four experimental diets distinct in fat quantity and quality: high SFA (HSFA); high MUFA (HMUFA) and two low-fat (LF) diets, one supplemented with 1.24 g EPA and DHA/d (LFn-3). A theoretical food-exchange model was developed. The average quantity of exchangeable fat was calculated as the sum of fat provided by added fats (spreads and oils), milk, cheese, biscuits, cakes, buns and pastries using data from the National Diet and Nutrition Survey of UK adults. Most of the exchangeable fat was replaced by specifically designed study foods. Also critical to the model was the use of carbohydrate exchanges to ensure the diets were isoenergetic. Volunteers from eight centres across Europe completed the dietary intervention. Results indicated that compositional targets were largely achieved with significant differences in fat quantity between the high-fat diets (39.9 (sem 0.6) and 38.9 (sem 0.51) percentage energy (%E) from fat for the HSFA and HMUFA diets respectively) and the low-fat diets (29.6 (sem 0.6) and 29.1 (sem 0.5) %E from fat for the LF and LFn-3 diets respectively) and fat quality (17.5 (sem 0.3) and 10.4 (sem 0.2) %E from SFA and 12.7 (sem 0.3) and 18.7 (sem 0.4) %E MUFA for the HSFA and HMUFA diets respectively). In conclusion, a robust, flexible food-exchange model was developed and implemented successfully in the LIPGENE dietary intervention trial.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view