SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malekian Bita 1986) "

Sökning: WFRF:(Malekian Bita 1986)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emilsson, Gustav, 1989, et al. (författare)
  • Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition
  • 2018
  • Ingår i: ACS Central Science. - : American Chemical Society (ACS). - 2374-7951 .- 2374-7943. ; 4:8, s. 1007-1014
  • Tidskriftsartikel (refereegranskat)abstract
    • Control of molecular translocation through nanoscale apertures is of great interest for DNA sequencing, biomolecular filters, and new platforms for single molecule analysis. However, methods for controlling the permeability of nanopores are very limited. Here, we show how nanopores functionalized with poly(ethylene glycol) brushes, which fully prevent protein translocation, can be reversibly gated to an "open" state by binding of single IgG antibodies that disrupt the macromolecular barrier. On the basis of surface plasmon resonance data we propose a two-state model describing the antibody-polymer interaction kinetics. Reversibly (weakly) bound antibodies decrease the protein exclusion height while irreversibly (strongly) bound antibodies do not. Our results are further supported by fluorescence readout from pore arrays and high-speed atomic force microscopy on single pores. This type of dynamic barrier control on the nanoscale provides new possibilities for biomolecular separation and analysis.
  •  
2.
  • Emilsson, Gustav, et al. (författare)
  • Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature
  • 2019
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 7:FEB
  • Tidskriftsartikel (refereegranskat)abstract
    • Biosensors based on plasmonic nanostructures are widely used in various applications and benefit from numerous operational advantages. One type of application where nanostructured sensors provide unique value in comparison with, for instance, conventional surface plasmon resonance, is investigations of the influence of nanoscale geometry on biomolecular binding events. In this study, we show that plasmonic "nanowells" conformally coated with a continuous lipid bilayer can be used to detect the preferential binding of the insulin receptor tyrosine kinase substrate protein (IRSp53) I-BAR domain to regions of negative surface curvature, i.e., the interior of the nanowells. Two different sensor architectures with and without an additional niobium oxide layer are compared for this purpose. In both cases, curvature preferential binding of IRSp53 (at around 0.025 nm(-1) and higher) can be detected qualitatively. The high refractive index niobium oxide influences the near field distribution and makes the signature for bilayer formation less clear, but the contrast for accumulation at regions of negative curvature is slightly higher. This work shows the first example of analyzing preferential binding of an average-sized and biologically important protein to negative membrane curvature in a label-free manner and in real-time, illustrating a unique application for nanoplasmonic sensors.
  •  
3.
  • Emilsson, Gustav, 1989, et al. (författare)
  • Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins
  • 2018
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 10:10, s. 4663-4669
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer brushes are widely used to prevent the adsorption of proteins, but the mechanisms by which they operate have remained heavily debated for many decades. We show conclusive evidence that a polymer brush can be a remarkably strong kinetic barrier towards proteins by using poly(ethylene glycol) grafted to the sidewalls of pores in 30 nm thin gold films. Despite consisting of about 90% water, the free coils seal apertures up to 100 nm entirely with respect to serum protein translocation, as monitored label-free through the plasmonic activity of the nanopores. The conclusions are further supported by atomic force microscopy and fluorescence microscopy. A theoretical model indicates that the brush undergoes a morphology transition to a sealing state when the ratio between the extension and the radius of curvature is approximately 0.8. The brush-sealed pores represent a new type of ultrathin filter with potential applications in bioanalytical systems.
  •  
4.
  • Ferhan, Abdul Rahim, et al. (författare)
  • Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions
  • 2018
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:12, s. 7458-7466
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoplasmonic sensors have emerged as a promising measurement approach to track biomacromolecular interactions involving lipid membrane interfaces. By taking advantage of nanoscale fabrication capabilities, it is possible to design sensing platforms with various architectural configurations. Such capabilities open the door to fabricating lipid membrane-coated nanoplasmonic sensors with varying degrees of membrane curvature in order to understand how biomacromolecular interaction processes are influenced by membrane curvature. Herein, we employed an indirect nanoplasmonic sensing approach to characterize the fabrication of supported lipid bilayers (SLBs) on silica-coated nanowell and nanodisk sensing platforms and to investigate how membrane curvature influences membrane-peptide interactions by evaluating the corresponding measurement responses from different spectral signatures that are sensitive to specific regions of the sensor geometries. SLBs were prepared by the vesicle fusion method, as monitored in real-time by nanoplasmonic sensing measurements and further characterized by fluorescence recovery after photobleaching (FRAP) experiments. By resolving different spectral signatures in the nanoplasmonic sensing measurements, it was determined that peptide binding induces membrane disruption at positively curved membrane regions, while peptide binding without subsequent disruption was observed at planar and negatively curved regions. These findings are consistent with the peptide's known preference to selectively form pores in positively curved membranes, providing validation to the nanoplasmonic sensing approach and highlighting how the integration of nanoplasmonic sensors with different nanoscale architectures can be utilized to study the influence of membrane curvature on biomacromolecular interaction processes.
  •  
5.
  • Malekian, Bita, 1986, et al. (författare)
  • A Method for Investigation of Size-Dependent Protein Binding to Nanoholes Using Intrinsic Fluorescence of Proteins
  • 2017
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 2:8, s. 4772-4778
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a novel method to study the influence of surface nanotopography on human fibrinogen adsorption at a given surface chemistry. Well-ordered arrays of nanoholes with different diameters down to 45 nm and a depth of 50 nm were fabricated in silicon by electron beam lithography and reactive ion etching. The nanostructured chip was used as a model system to understand the effect of size of the nanoholes on fibrinogen adsorption. Fluorescence imaging, using the intrinsic fluorescence of proteins, was used to characterize the effect of the nanoholes on fibrinogen adsorption. Atomic force microscopy was used as a complementary technique for further characterization of the interaction. The results demonstrate that as the size of the nanoholes is reduced to 45 nm, fibrinogen adsorption is significantly increased.
  •  
6.
  • Malekian, Bita, 1986, et al. (författare)
  • Detecting Selective Protein Binding Inside Plasmonic Nanopores: Toward a Mimic of the Nuclear Pore Complex
  • 2018
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 6:December 2018
  • Tidskriftsartikel (refereegranskat)abstract
    • Biosensors based on plasmonic nanostructures offer label-free and real-time monitoring of biomolecular interactions. However, so do many other surface sensitive techniques with equal or better resolution in terms of surface coverage. Yet, plasmonic nanostructures offer unique possibilities to study effects associated with nanoscale geometry. In this work we use plasmonic nanopores with double gold films and detect binding of proteins inside them. By thiol and trietoxysilane chemistry, receptors are selectively positioned on the silicon nitride interior walls. Larger (similar to 150 nm) nanopores are used detect binding of averaged sized proteins (similar to 60 kg/mol) with high signal to noise (>100). Further, we fabricate pores that approach the size of the nuclear pore complex (diameter down to 50 nm) and graft disordered phenylalanine-glycine nucleoporin domains to the walls, followed by titration of karyopherin beta 1 transport receptors. The interactions are shown to occur with similar affinity as determined by conventional surface plasmon resonance on planar surfaces. Our work illustrates another unique application of plasmonic nanostructures, namely the possibility to mimic the geometry of a biological nanomachine with integrated optical sensing capabilities.
  •  
7.
  • Malekian, Bita, 1986, et al. (författare)
  • Fabrication and Characterization of Plasmonic Nanopores with Cavities in the Solid Support
  • 2017
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 17:6, s. Article no. 1444 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonic nanostructures are widely used for various sensing applications by monitoring changes in refractive index through optical spectroscopy or as substrates for surface enhanced Raman spectroscopy. However, in most practical situations conventional surface plasmon resonance is preferred for biomolecular interaction analysis because of its high resolution in surface coverage and the simple single-material planar interface. Still, plasmonic nanostructures may find unique sensing applications, for instance when the nanoscale geometry itself is of interest. This calls for new methods to prepare nanoscale particles and cavities with controllable dimensions and curvature. In this work, we present two types of plasmonic nanopores where the solid support underneath a nanohole array has been etched, thereby creating cavities denoted as 'nanowells' or 'nanocaves' depending on the degree of anisotropy (dry or wet etch). The refractometric sensitivity is shown to be enhanced upon removing the solid support because of an increased probing volume and a shift of the asymmetric plasmonic field towards the liquid side of the finite gold film. Furthermore, the structures exhibit different spectral changes upon binding inside the cavities compared to the gold surface, which means that the structures can be used for location-specific detection. Other sensing applications are also suggested.
  •  
8.
  • Malekian, Bita, 1986 (författare)
  • Novel Functionalized Nanopores for Plasmonic Sensing
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanoplasmonic sensors offer a label-free platform for real-time monitoring of biomolecular interactions by tracking changes in refractive index through optical spectroscopy. However, other surface sensitive techniques such as conventional surface plasmon resonance offer similar capabilities with equal or even better resolution in terms of surface coverage. Still, plasmonic nanosensors provide unique possibilities when the nanoscale geometry itself is of interest. By taking the advantage of nanofabrication technology, it is possible to engineer nanostructures with controllable dimensions, curvature and optical properties to study nanometer-sized biomolecules, such as proteins.   This thesis presents different types of nanoplasmonic sensing platforms, each with a unique geometry in which biomolecules can be probed through plasmonic read out. Two of the structures were fabricated by short-range ordered colloidal self-assembly and etching of the solid support underneath a nanohole array. The structures are denoted as ‘nanocaves’ and ‘nanowells’ depending on the degree of anisotropy. By suitable surface functionalization, the geometry of the plasmonic nanocavities was utilized for location-specific detection of proteins. In addition, nanowells were employed to investigate curvature-dependent biomolecular interactions.   We have also developed subwavelength apertures in optically thin silicon nitride membranes covered with continuous metal films, referred to as solid-state ‘nanopores’. Plasmonic nanopores in suspended metal-insulator-metal films were fabricated in short-range ordered and long-range ordered arrays using short-range ordered colloidal self-assembly and electron beam lithography, respectively. Both methods prevent the metal from ending up on the silicon nitride walls which is of paramount importance for plasmonic properties and selective chemical functionalization. Preparing nanopores with identical structure but different aperture ordering provides the opportunity to understand how aperture ordering influences plasmonic response, particularly with respect to the nature of far field spectral features. Long-range ordered vs. short-range ordered nanopores exhibit similar optical properties with only a few differences in the plasmonic response.   By appropriate material-specific modification (thiol and trietoxysilane chemistry) plasmonic nanopores were employed for detection of average sized proteins (~ 60 kg/mol) inside the pores. In addition to nanoplasmonic sensing, we could also construct a credible mimic (in terms of geometry) of nuclear pore complexes, when the size of the solid state nanopores approaches ~ 50 nm. The unique geometry and size of nanopores (diameter ~ 50 nm) opens up the possibility to mimic the geometry of biological nanomachines with integrated optical sensing capabilities.
  •  
9.
  • Malekian, Bita, 1986, et al. (författare)
  • Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography
  • 2019
  • Ingår i: Nanoscale Advances. - : Royal Society of Chemistry (RSC). - 2516-0230. ; 1:11, s. 4282-4289
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid state nanopores are central structures for many applications. To date, much effort has been spent on controlled fabrication of single nanopores, while relatively little work has focused on large scale fabrication of arrays of nanopores. In this work we show wafer-scale fabrication of plasmonic nanopores in 50 nm thick silicon nitride membranes with one or two 30 nm gold films, using electron beam lithography with a negative resist or a new version of colloidal lithography. Both approaches offer good control of pore diameter (even below 100 nm) and with high yield (>90%) of intact membranes. Colloidal lithography has the advantage of parallel patterning without expensive equipment. Despite its serial nature, electron beam lithography provides high throughput and can make arbitrary array patterns. Importantly, both methods prevent metal from ending up on the membrane pore sidewalls. The new fabrication methods make it possible to compare the optical properties of structurally identical plasmonic nanopore arrays with either long-range order (e-beam) or short-range order (colloidal). The resonance features in the extinction spectrum are very similar for both structures when the pitch is the same as the characteristic spacing in the self-assembled colloidal pattern. Long-range ordering slightly enhances the magnitude of the extinction maximum and blueshift the transmission maximum by tens of nm. Upon reducing the diameter in long-range ordered arrays, the resonance is reduced in magnitude and the transmission maximum is further blue shifted, just like for short-range ordered arrays. These effects are well explained by interpreting the spectra as Fano interference between the grating-type excitation of propagating surface plasmons and the broad transmission via individual pores in the metal film. Furthermore, we find that only the short-range ordered arrays scatter light, which we attribute to the highly limited effective period in the short-range ordered system and the corresponding lack of coherent suppression of scattering by interference effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy