SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Malm Helena A.) "

Search: WFRF:(Malm Helena A.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Salunkhe, Vishal A., et al. (author)
  • Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved Insulin Sensitivity and Reduced Insulin Secretion
  • 2016
  • In: EBioMedicine. - : Elsevier. - 2352-3964. ; 10, s. 185-194
  • Journal article (peer-reviewed)abstract
    • Statins are beneficial in the treatment of cardiovascular disease (CVD), but these lipid-lowering drugs are associated with increased incidence of new on-set diabetes. The cellular mechanisms behind the development of diabetes by statins are elusive. Here we have treated mice on normal diet (ND) and high fat diet (HFD) with rosuvastatin. Under ND rosuvastatin lowered blood glucose through improved insulin sensitivity and increased glucose uptake in adipose tissue. In vitro rosuvastatin reduced insulin secretion and insulin content in islets. In the beta cell Ca(2+) signaling was impaired and the density of granules at the plasma membrane was increased by rosuvastatin treatment. HFD mice developed insulin resistance and increased insulin secretion prior to administration of rosuvastatin. Treatment with rosuvastatin decreased the compensatory insulin secretion and increased glucose uptake. In conclusion, our data shows dual effects on glucose homeostasis by rosuvastatin where insulin sensitivity is improved, but beta cell function is impaired.
  •  
3.
  • Ofori, Jones K, et al. (author)
  • Confluence does not affect the expression of miR-375 and its direct targets in rat and human insulin-secreting cell lines
  • 2017
  • In: PeerJ. - : PeerJ. - 2167-8359. ; 5
  • Journal article (peer-reviewed)abstract
    • MicroRNAs are small non-coding RNAs, which negatively regulate the expression of target genes. They have emerged as important modulators in beta cell compensation upon increased metabolic demand, failure of which leads to reduced insulin secretion and type 2 diabetes. To elucidate the function of miRNAs in beta cells, insulin-secreting cell lines, such as the rat insulinoma INS-1 832/13 and the human EndoC-βH1, are widely used. Previous studies in the cancer field have suggested that miRNA expression is influenced by confluency of adherent cells. We therefore aimed to investigate whether one of the most enriched miRNAs in the pancreatic endocrine cells, miR-375, and two of its validated targets in mouse, Cav1 and Aifm1, were differentially-expressed in cell cultures with different confluences. Additionally, we measured the expression of other miRNAs, such as miR-152, miR-130a, miR-132, miR-212 and miR-200a, with known roles in beta cell function. We did not see any significant expression changes of miR-375 nor any of the two targets, in both the rat and human beta cell lines at different confluences. Interestingly, among the other miRNAs measured, the expression of miR-132 and miR-212 positively correlated with confluence, but only in the INS-1 832/13 cells. Our results show that the expression of miR-375 and other miRNAs with known roles in beta cell function is independent of, or at least minimally influenced by the density of proliferating adherent cells, especially within the confluence range optimal for functional assays to elucidate miRNA-dependent regulatory mechanisms in the beta cell.
  •  
4.
  •  
5.
  •  
6.
  • Zhou, Qi, et al. (author)
  • Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating
  • 2009
  • In: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-683X .- 1744-6848. ; 5:21, s. 4124-4130
  • Journal article (peer-reviewed)abstract
    • Biomimetic approaches involving environmentally-friendly synthetic pathways provide an opportunity to elaborate novel high-performance biocomposites. Here we have developed a low-energy biosynthetic system for the production of a high-strength composite material consisting of self-assembled and nanostructured cellulosic nanofibers. This biocomposite is analogous to natural composite materials with high strength and hierarchical organization such as wood or tendon. It was generated by growing the bacterium Acetobacter, which naturally produces cellulosic nanofibers, in the presence of hydroxyethylcellulose (HEC). Individual cellulose fibrils were coated by HEC and exhibited a smaller lateral dimension than pure bacterial cellulose (BC) fibrils. They self-assembled to form compartmentalized nanofibers and larger cellulose fibril aggregates compared to pure BC. The tensile strength of nanocomposite films prepared from the compartmentalized cellulosic nanofibers was 20% higher than that of pure BC sheets and wood cellulose nanopapers, and 60% higher than that of conventional BC/HEC blends, while no strain-to-failure decrease was observed. The thin nanoscale coating consisting of hydrated HEC significantly increased the mechanical performance of the nanocomposite films by provoking compartmentalization of individual fibrils.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view