SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malm Magdalena 1983 ) "

Sökning: WFRF:(Malm Magdalena 1983 )

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thalén, Niklas, et al. (författare)
  • Mammalian cell display with automated oligo design and library assembly allows for rapid residue level conformational epitope mapping
  • 2024
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise epitope determination of therapeutic antibodies is of great value as it allows for further comprehension of mechanism of action, therapeutic responsiveness prediction, avoidance of unwanted cross reactivity, and vaccine design. The golden standard for discontinuous epitope determination is the laborious X-ray crystallography method. Here, we present a combinatorial method for rapid mapping of discontinuous epitopes by mammalian antigen display, eliminating the need for protein expression and purification. The method is facilitated by automated workflows and tailored software for antigen analysis and oligonucleotide design. These oligos are used in automated mutagenesis to generate an antigen receptor library displayed on mammalian cells for direct binding analysis by flow cytometry. Through automated analysis of 33930 primers an optimized single condition cloning reaction was defined allowing for mutation of all surface-exposed residues of the receptor binding domain of SARS-CoV-2. All variants were functionally expressed, and two reference binders validated the method. Furthermore, epitopes of three novel therapeutic antibodies were successfully determined followed by evaluation of binding also towards SARS-CoV-2 Omicron BA.2. We find the method to be highly relevant for rapid construction of antigen libraries and determination of antibody epitopes, especially for the development of therapeutic interventions against novel pathogens.
  •  
2.
  •  
3.
  • Aniander, Gustav (författare)
  • Improved candidate screening through tailored co-culture assays and precise tuning of protein expression
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The field of biopharmaceuticals is a rapidly growing one. In the last ten years the number of approved biopharmaceuticals has more than doubled. A major hurdle to overcome for increased availability of all the new, effective biopharmaceuticals is the cost of treatment. Much of this can be attributed to the sheer time required for their development. Owing to this, interest in improvements to the biopharmaceuticals and their development process has also rapidly increased. As costs increase the further into development a drug candidate progresses, increasing the fidelity of screening at early stages could alleviate some of the exorbitant costs of development.In paper I, we showcase a novel way of targeting the tumor microenvironment (TME) to allow for TMElocalized CD40 activation. This is of interest as CD40 agonists have shown great potential for immune activation, but with systemic activation leading to severe adverse effects. The localized activation is achieved through the construction of an affinity fusion protein termed an AffiMab through fusion of a platelet derived growth factor receptor beta (PDGFRβ) targeting affibody to the heavy chain of a CD40 agonistic monoclonal antibody (mAb). We demonstrate PDGFRβ-dependent activation in a variety of assays, showing that the approach merits further investigation.Building on the activation assays set up in paper I, we aim to generate an in vitro screening platform for immune cell engagers in paper II. Screening candidates for on-target off-tumor activation is essential, as such activation would lead to adverse effects and be a doselimiting factor. To screen for this, we construct a series of plasmids which upon transfecting cells allow for different levels of a cell-surface target protein to be expressed, a so-called target density panel. This is achieved through the use of hairpin forming elements in the 5’ untranslated region of the mRNA dubbed regulatory elements (RgEs). Through use of different RgEs, we show that a target density panel can be generated and validate it in activation assays with the AffiMab developed in paper I. The platforms’ uniform cell surface background due to all different levels of target being expressed in the same host cell line and tunability through use of different RgEs are features that make it interesting for further research.Finally in paper III, we construct and test an improved translation initiation site (TIS) sequence. Using previous studies on the impact of the nucleotides in the sequence on the efficacy of the TIS, we constructed a novel sequence, TISNOV. This sequence enhanced titer and quality for recombinant production of IgG1 and IgG4 in both stable and transient settings. Further research into other TIS sequences and their uses in regulating protein expression, as well as usage of the TISNOV to improve expression of difficult to express proteins such as bispecifics remain interesting.In conclusion this thesis focuses on different manners to improve and hasten development of new biopharmaceuticals through usage of new workflows, platforms, and genetic engineering strategies.
  •  
4.
  • Göstring, Lovisa, et al. (författare)
  • Cellular Effects of HER3-Specific Affibody Molecules
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:6, s. e40023-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have led to the recognition of the epidermal growth factor receptor HER3 as a key player in cancer, and consequently this receptor has gained increased interest as a target for cancer therapy. We have previously generated several Affibody molecules with subnanomolar affinity for the HER3 receptor. Here, we investigate the effects of two of these HER3-specific Affibody molecules, Z05416 and Z05417, on different HER3-overexpressing cancer cell lines. Using flow cytometry and confocal microscopy, the Affibody molecules were shown to bind to HER3 on three different cell lines. Furthermore, the receptor binding of the natural ligand heregulin (HRG) was blocked by addition of Affibody molecules. In addition, both molecules suppressed HRG-induced HER3 and HER2 phosphorylation in MCF-7 cells, as well as HER3 phosphorylation in constantly HER2-activated SKBR-3 cells. Importantly, Western blot analysis also revealed that HRG-induced downstream signalling through the Ras-MAPK pathway as well as the PI3K-Akt pathway was blocked by the Affibody molecules. Finally, in an in vitro proliferation assay, the two Affibody molecules demonstrated complete inhibition of HRG-induced cancer cell growth. Taken together, our findings demonstrate that Z05416 and Z05417 exert an anti-proliferative effect on two breast cancer cell lines by inhibiting HRG-induced phosphorylation of HER3, suggesting that the Affibody molecules are promising candidates for future HER3-targeted cancer therapy.
  •  
5.
  • Kronqvist, Nina, et al. (författare)
  • Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules
  • 2011
  • Ingår i: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134. ; 24:4, s. 385-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that the catalytically inactive ErbB3 (HER3) protein plays a fundamental role in normal tyrosine kinase receptor signaling as well as in aberrant functioning of these signaling pathways, resulting in several forms of human cancers. ErbB3 has recently also been implicated in resistance to ErbB2-targeting therapies. Here we report the generation of high-affinity ErbB3-specific Affibody molecules intended for future molecular imaging and biotherapeutic applications. Using a high-complexity phage-displayed Affibody library, a number of ErbB3 binders were isolated and specific cell-binding activity was demonstrated in immunofluorescence microscopic studies. Subsequently, a second-generation library was constructed based on sequences of the candidates from the phage display selection. By exploiting the sensitive affinity discrimination capacity of a novel bacterial surface display technology, the affinity of candidate Affibody molecules was further increased down to subnanomolar affinity. In summary, the demonstrated specific targeting of native ErbB3 receptor on human cancer cell lines as well as competition with the heregulin/ErbB3 interaction indicates that these novel biological agents may become useful tools for diagnostic and therapeutic targeting of ErbB3-expressing cancers. Our studies also highlight the powerful approach of combining the advantages of different display technologies for generation of functional high-affinity protein-based binders. Potential future applications, such as radionuclide-based diagnosis and treatment of human cancers are discussed.
  •  
6.
  • Leitao, Charles Dahlsson, 1992-, et al. (författare)
  • Display of a naïve affibody library on staphylococci for selection of binders by means of flow cytometry sorting
  • 2023
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 655, s. 75-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the field of combinatorial protein engineering there is a great demand for robust high-throughput selection platforms that allow for unbiased protein library display, affinity-based screening, and amplification of selected clones. We have previously described the development of a staphylococcal display system used for displaying both alternative-scaffolds and antibody-derived pro-teins. In this study, the objective was to generate an improved expression vector for displaying and screening a high-complexity naive affibody library, and to facilitate downstream validation of isolated clones. A high-affinity normalization tag, consisting of two ABD-moieties, was introduced to simplify off-rate screening procedures. In addition, the vector was furnished with a TEV protease substrate recog-nition sequence upstream of the protein library which enables proteolytic processing of the displayed construct for improved binding signal. In the library design, 13 of the 58 surface-exposed amino acid positions were selected for full randomization (except proline and cysteine) using trinucleotide tech-nology. The genetic library was successfully transformed to Staphylococcus carnosus cells, generating a protein library exceeding 109 members. De novo selections against three target proteins (CD14, MAPK9 and the affibody ZEGFR:2377) were successfully performed using magnetic bead-based capture followed by flow-cytometric sorting, yielding affibody molecules binding their respective target with nanomolar affinity. Taken together, the results demonstrate the feasibility of the staphylococcal display system and the proposed selection procedure to generate new affibody molecules with high affinity.
  •  
7.
  • Malm, Magdalena, 1983-, et al. (författare)
  • Evolution from adherent to suspension: systems biology of HEK293 cell line development
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives. Here we present a genomic, transcriptomic and metabolic gene analysis of six of the most widely used HEK293 cell lines. Changes in gene copy and expression between industrial progeny cell lines and the original HEK293 were associated with cellular component organization, cell motility and cell adhesion. Changes in gene expression between adherent and suspension derivatives highlighted switching in cholesterol biosynthesis and expression of five key genes (RARG, ID1, ZIC1, LOX and DHRS3), a pattern validated in 63 human adherent or suspension cell lines of other origin.
  •  
8.
  • Malm, Magdalena, 1983- (författare)
  • Generation and characterization of Affibody molecules targeting HER3
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the field of oncology, the ability to target specific tumor cells using highly selective targeting molecules is an attractive and emerging concept. In this context, the epidermal growth factor receptor HER3 has proven central to the biology behind many different human cancers and inhibition of the signaling mediated by this receptor could provide antitumoral effects. Consequently, this receptor has emerged as a suitable target for imaging, functional blocking or delivery of toxic payloads. A promising targeting-molecule for such applications is the small non-immunoglobulin derived Affibody molecule. The work upon which this thesis is based, revolves around HER3 with the aim to generate and characterize Affibody molecules targeting this receptor. In the first study, HER3-specific Affibody molecules were generated by combinatorial protein engineering using a combined approach where first generation binders were isolated from a phage-displayed naive library, followed by affinity maturation of these binders using a focused staphylococcal surface-displayed library and flow-cytometric cell sorting. This engineering strategy enabled the successful isolation of HER3-specific Affibody molecules with subnanomolar affinities for the receptor and the ability to compete with the natural ligand heregulin (HRG) for binding to HER3. In the second study, the cellular effects of these Affibody molecules were characterization in vitro. The results demonstrated that the ability to inhibit HRG-binding to the receptor translated into inhibition of ligand-induced phosphorylation of HER3, HER2 as well as the downstream signaling molecules Akt and Erk. As a result, the HER3-specific Affibody molecules also inhibited HRG-induced cell growth of two different breast cancer cell lines in vitro. These promising results, suggested that the HER3-targeting Affibody molecules could have a therapeutic effect in tumors that are dependent on ligand-induced signaling of HER3. However, due to the relatively low expression level of HER3 on tumor cells, we explored two different engineering approaches of the HER3-specific Affibody molecules in order to potentially improve its tumor targeting ability. One approach was to construct bispecific Affibody molecules where a HER3- and a HER2-specific Affibody molecule were fused on each side of an albumin-binding domain (ABD). In the third study, one such bispecific construct was shown to have increased ability to inhibit ligand-induced phosphorylation of HER2 and retained ability to inhibit HRG-induced activation of HER3, as compared to the monomeric anti-HER3 Affibody. Another strategy was to further increase the affinity of the HER3-specific Affibody molecules towards the receptor through a semi-rational affinity maturation approach. In the fourth study, a staphylococcal displayed affinity maturation library was screened by FACS using an off-rate selection procedure. This approach resulted in the successful isolation of picomolar HER3-binders with improved potency of inhibiting HRG-induced cell growth as compared to a first generation binder. Moreover, in the fifth study, in vivo characterization of these HER3-specific Affibody molecules was performed in both normal and xenograft mice. The results suggested specific targeting of HER3 in vivo and provided the first evidence of successful tumor imaging using a HER3-specific Affibody. Taken together, the work included in this thesis describes (to our knowledge) the first non-immunoglobulin derived affinity protein targeting HER3, with promising features for both therapeutic and imaging applications.
  •  
9.
  • Malm, Magdalena, 1983-, et al. (författare)
  • Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify bottlenecks limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant overexpression. Surprisingly, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. While most components of the secretory machinery showed comparable expression levels in both expression hosts, genes with significant expression variation were identified. Among these, ATF4, SRP9, JUN, PDIA3 and HSPA8 were validated as productivity boosters in CHO. Further, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components improving recombinant protein yield in HEK293 and CHO.
  •  
10.
  • Malm, Magdalena, 1983-, et al. (författare)
  • Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins
  • 2022
  • Ingår i: Metabolic engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 72, s. 171-187
  • Tidskriftsartikel (refereegranskat)abstract
    • Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.
  •  
11.
  •  
12.
  • Malm, Magdalena, 1983-, et al. (författare)
  • Inhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification
  • 2013
  • Ingår i: PLOS ONE. - : Public Library Science, USA. - 1932-6203. ; 8:5, s. e62791-
  • Tidskriftsartikel (refereegranskat)abstract
    • The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 PM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.
  •  
13.
  • Moradi, Mona, et al. (författare)
  • Autophagy and intracellular product degradation genes identified by systems biology analysis reduce aggregation of bispecific antibody in CHO cells
  • 2022
  • Ingår i: New Biotechnology. - : Elsevier BV. - 1871-6784 .- 1876-4347. ; 68, s. 68-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of therapeutic bispecific antibodies negatively affects the yield, shelf-life, efficacy and safety of these products. Pairs of stable Chinese hamster ovary (CHO) cell lines produced two difficult-to-express bispecific antibodies with different levels of aggregated product (10-75% aggregate) in a miniaturised bioreactor system. Here, transcriptome analysis was used to interpret the biological causes for the aggregation and to identify strategies to improve product yield and quality. Differential expression-and gene set analysis revealed upregulated proteasomal degradation, unfolded protein response and autophagy processes to be correlated with reduced protein aggregation. Fourteen candidate genes with the potential to reduce aggregation were co expressed in the stable clones for validation. Of these, HSP90B1, DDIT3, AKT1S1, and ATG16L1, were found to significantly lower aggregation in the stable producers and two (HSP90B1 and DNAJC3) increased titres of the anti-HER2 monoclonal antibody trastuzumab by 50% during transient expression. It is suggested that this approach could be of general use for defining aggregation bottlenecks in CHO cells.
  •  
14.
  • Moradi, Mona, et al. (författare)
  • Autophagy and intracellular product degradation genes reduce aggregation of bispecific antibody in CHO cells with a high translational burden
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Aggregation of therapeutic bispecific antibodies negatively affects the yield, shelf-life, efficacy and safety of the product. Pairs of stable Chinese hamster ovary cell lines produced two difficult- to-express bispecific antibodies with different levels of aggregated product (10-75% aggregate) in a miniaturized bioreactor system. Here, we analyse the cellular response and link to product aggregation by comparative transcriptome analysis of these CHO cells, to define biological causes and infer strategies to improve yield and quality. Differential expression- and gene set analysis revealed upregulated proteosomal degradation, unfolded protein response and autophagy processes to be correlated with reduction of protein aggregation. Fourteen candidate genes with potential to reduce aggregation were co-expressed in the stable clones for validation. Of these, HSP90B1, DDIT3, AK1S1, and ATG16L1, were found to significantly lower aggregation in the stable producers and two (HSP90B1 and DNAJC3) increased trastuzumab titres by 50% each during transient expression. We suggest our approach to be of general use for defining aggregation bottlenecks in CHO.
  •  
15.
  • Saghaleyni, Rasool, 1987, et al. (författare)
  • Enhanced metabolism and negative regulation of ER stress support higher erythropoietin production in HEK293 cells
  • 2022
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.
  •  
16.
  • Schwarz, Hubert, et al. (författare)
  • Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Process intensification in mammalian cell culture-based recombinant protein production has been achieved by high cell density perfusion exceeding 108 cells/mL in the recent years. As the majority of therapeutic proteins are produced in Chinese Hamster Ovary (CHO) cells, intensified perfusion processes have been mainly developed for this type of host cell line. However, the use of CHO cells can result in non-human posttranslational modifications of the protein of interest, which may be disadvantageous compared with human cell lines.In this study, we developed a high cell density perfusion process of Human Embryonic Kidney (HEK293) cells producing recombinant human Erythropoietin (rhEPO). Firstly, a small-scale perfusion system from commercial bench-top screening bioreactors was developed for <250 mL working volume. Then, after the first trial runs with CHO cells, the system was modified for HEK293 cells (more sensitive than CHO cells) to achieve a higher oxygen transfer under mild aeration and agitation conditions. Steady states for medium (20 x 106 cells/mL) and high cell densities (80 x 106 cells/mL), normal process temperature (37 °C) and mild hypothermia (33 °C) as well as different cell specific perfusion rates (CSPR) from 10 to 60 pL/cell/day were applied to study the performance of the culture. The volumetric productivity was maximized for the high cell density steady state but decreased when an extremely low CSPR of 10 pL/cell/day was applied. The shift from high to low CSPR strongly reduced the nutrient uptake rates. The results from our study show that human cell lines, such as HEK293 can be used for intensified perfusion processes. 
  •  
17.
  • Schwarz, Hubert, et al. (författare)
  • Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin
  • 2020
  • Ingår i: Journal of Biotechnology. - : Elsevier. - 0168-1656 .- 1873-4863. ; 309, s. 44-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Process intensification in mammalian cell culture-based recombinant protein production has been achieved by high cell density perfusion exceeding 10(8) cells/mL in the recent years. As the majority of therapeutic proteins are produced in Chinese Hamster Ovary (CHO) cells, intensified perfusion processes have been mainly developed for this type of host cell line. However, the use of CHO cells can result in non-human posttranslational modifications of the protein of interest, which may be disadvantageous compared with human cell lines. In this study, we developed a high cell density perfusion process of Human Embryonic Kidney (HEK293) cells producing recombinant human Erythropoietin (rhEPO). Firstly, a small-scale perfusion system from commercial bench-top screening bioreactors was developed for < 250 mL working volume. Then, after the first trial runs with CHO cells, the system was modified for HEK293 cells (more sensitive than CHO cells) to achieve a higher oxygen transfer under mild aeration and agitation conditions. Steady states for medium (20 x 10(6) cells/mL) and high cell densities (80 x 10(6) cells/mL), normal process temperature (37 degrees C) and mild hypothermia (33 degrees C) as well as different cell specific perfusion rates (CSPR) from 10 to 60 pL/cell/day were applied to study the performance of the culture. The volumetric productivity was maximized for the high cell density steady state but decreased when an extremely low CSPR of 10 pL/cell/day was applied. The shift from high to low CSPR strongly reduced the nutrient uptake rates. The results from our study show that human cell lines, such as HEK293 can be used for intensified perfusion processes.
  •  
18.
  • Thalén, Niklas, 1985-, et al. (författare)
  • Systems biology greatly improve activity of secreted therapeutic sulfatase in CHO bioprocess
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. However, such recombinant production of sulfatases suffers greatly from low product activity and yield, further limiting accessibility for patient groups. Here, we have addressed this problem by defining key-proteins necessary for active sulfatase secretion by comparison of CHO clones with different levels of production of active sulfatase. Quantitative transcriptomic analysis highlighted 14 key genes associated with sulfatase production, and experimental validation by co-expression improved the sulfatase enzyme activity by up to 150-fold. Furthermore, a correlation between product mRNA levels and sulfatase activity were observed and expression with lower activity promoters showed an increased in sulfatase activity. The workflow devised is general and we propose it to be useful for resolving bottlenecks in cellular machineries for improvement of cell factories for other biologics as well.
  •  
19.
  • Thalén, Niklas, et al. (författare)
  • Tuning of CHO secretional machinery improve activity of secreted therapeutic sulfatase 150-fold
  • 2024
  • Ingår i: Metabolic engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 81, s. 157-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.
  •  
20.
  • Zhan, Caijuan, 1985-, et al. (författare)
  • Hydrodynamic shear stress in hollow filter for perfusion culture of human cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • High cell density perfusion process is an economical way to produce biopharmaceuticals at high yield. To achieve high density of healthy cells, the cell culture conditions should be free from mechanically detriment. Human embryonic kidney (HEK) K293 cells, interesting for the production of therapeutic glycoproteins, are known as shear sensitive. In order to obtain the optimal hydrodynamics conditions with reduced mechanical damage, we investigated the fact of the shear stress compatible with HEK293 cells. We reviewed hollow filter based tangential flow filtration strategies, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF). We studied shear stress introduced by these two flow filtration methods. By theoretical study, we obtained that lower shear stress introduced by alternating tangential flow filtration result in lower average shear stress comparing to tangential flow filtration with same flow rate.  In our experimental runs, we achieved different shear stress levels by applying different flow rates. 5-Days batch cultivations were performed to examine the influence of shear stress on cell growing and metabolic behaviour. We identified that the shear stress potentially reduce the growth rate and productivity of HEK293 cells and found the cell metabolism associated with shear stress levels. By documenting these cell responses to shear stress, we confirmed our theoretical results and could further optimize the hydrodynamic conditions for perfusion process of HEK 293 cells. 
  •  
21.
  • Zhan, Caijuan, et al. (författare)
  • Low Shear Stress Increases Recombinant Protein Production and High Shear Stress Increases Apoptosis in Human Cells
  • 2020
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 23:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic kidney cells HEK293 can be used for the production of therapeutic glycoproteins requiring human post-translational modifications. High cell density perfusion processes are advantageous for such production but are challenging due to the shear sensitivity of HEK293 cells. To understand the impact of hollow filter cell separation devices, cells were cultured in bioreactors operated with tangential flow filtration (TFF) or alternating tangential flow filtration (ATF) at various flow rates. The average theoretical velocity profile in these devices showed a lower shear stress for ATF by a factor 0.637 compared to TFF. This was experimentally validated and, furthermore, transcriptomic evaluation provided insights into the underlying cellular processes. High shear caused cellular stress leading to apoptosis by three pathways, i.e. endoplasmic reticulum stress, cytoskeleton reorganization, and extrinsic signaling pathways. Positive effects of mild shear stress were observed, with increased recombinant erythropoietin production and increased gene expression associated with transcription and protein phosphorylation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21
Typ av publikation
tidskriftsartikel (14)
annan publikation (5)
konstnärligt arbete (2)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Malm, Magdalena, 198 ... (20)
Rockberg, Johan (14)
Chotteau, Véronique, ... (9)
Lundqvist, Magnus (9)
Volk, Anna-Luisa (8)
Hatton, Diane (7)
visa fler...
Löfblom, John (5)
Moradi, Mona (5)
Ståhl, Stefan (4)
Thalén, Niklas (4)
Field, Ray (4)
Grassi, Luigi (4)
Wistbacka, Num (4)
Mardinoglu, Adil (3)
Kronqvist, Nina (3)
Schwarz, Hubert (3)
Razavi, Ronia (3)
Mebrahtu, Aman (3)
Höidén-Guthenberg, I ... (3)
Varley, Paul G. (3)
Nielsen, Jens B, 196 ... (2)
Edfors, Fredrik (2)
Tolmachev, Vladimir (2)
Orlova, Anna (2)
Nordling, Erik (2)
Gedda, Lars (2)
Frejd, Fredrik (2)
Bidkhori, Gholamreza (2)
Gräslund, Torbjörn (2)
Zhang, Ye (2)
Chotteau, Véronique (2)
Frejd, Fredrik Y. (2)
Varasteh, Zohreh (2)
Kotol, David (2)
Nilsson, Joakim (2)
Andersson, Monica (2)
Smith, Andrew (2)
Forsberg, Johan (2)
Lindberg, Hanna (2)
Svensson, Thomas, 19 ... (2)
Su, Chao (2)
Sandegren, Anna (2)
Roth, Robert G. (2)
Lewis, Nathan E (2)
Göstring, Lovisa (2)
Possner, Dominik (2)
Saghaleyni, Rasool, ... (2)
Kuo, Chih-Chung (2)
Karlander, Maximilia ... (2)
Pintar, Anton, 1995- (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (21)
Uppsala universitet (4)
Chalmers tekniska högskola (2)
Karolinska Institutet (2)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (9)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy