SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mandrup Poulsen Thomas) "

Sökning: WFRF:(Mandrup Poulsen Thomas)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backe, Marie Balslev, et al. (författare)
  • The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis
  • 2019
  • Ingår i: Journal of Diabetes Research. - : Hindawi Limited. - 2314-6753 .- 2314-6745. ; 2019
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Posttranslational modifications of histones and transcription factors regulate gene expression and are implicated in beta-cell failure and diabetes. We have recently shown that preserving H3K27 and H3K4 methylation using the lysine demethylase inhibitor GSK-J4 reduces cytokine-induced destruction of beta-cells and improves beta-cell function. Here, we investigate the therapeutic potential of GSK-J4 to prevent diabetes development and examine the importance of H3K4 methylation for islet function. Materials and Methods: We used two mouse models of diabetes to investigate the therapeutic potential of GSK-J4. To clarify the importance of H3K4 methylation, we characterized a mouse strain with knockout (KO) of the H3K4 demethylase KDM5B. Results: GSK-J4 administration failed to prevent the development of experimental diabetes induced by multiple low-dose streptozotocin or adoptive transfer of splenocytes from acutely diabetic NOD to NODscid mice. KDM5B-KO mice were growth retarded with altered body composition, had low IGF-1 levels, and exhibited reduced insulin secretion. Interestingly, despite secreting less insulin, KDM5B-KO mice were able to maintain normoglycemia following oral glucose tolerance test, likely via improved insulin sensitivity, as suggested by insulin tolerance testing and phosphorylation of proteins belonging to the insulin signaling pathway. When challenged with high-fat diet, KDM5B-deficient mice displayed similar weight gain and insulin sensitivity as wild-type mice. Conclusion: Our results show a novel role of KDM5B in metabolism, as KDM5B-KO mice display growth retardation and improved insulin sensitivity.
  •  
2.
  • Backe, Marie Balslev, et al. (författare)
  • Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function
  • 2018
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 460, s. 47-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress.Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting a possible role in inflammation-induced β-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress response gene expression. GSK-J4 furthermore increased expression of insulin gene and glucose-stimulated insulin secretion. Expression of genes regulating purinergic and cytokine ligand-receptor interactions was downregulated following GSK-J4 exposure, while expression of genes involved in cell maintenance and survival was upregulated. These data suggest that KDMs are important regulators of inflammation-induced β-cell dysfunction and death.
  •  
3.
  • Fred, Rikard G, et al. (författare)
  • High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:5, s. e10843-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates.METHODOLOGY/PRINCIPAL FINDINGS:Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose.CONCLUSION:Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction.
  •  
4.
  • Greenbaum, Carla, et al. (författare)
  • Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes
  • 2008
  • Ingår i: Diabetes Care. - 0149-5992 .- 1935-5548. ; 31:10, s. 1966-1971
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Beta-cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures. RESEARCH DESIGN AND METHODS: In randomized sequences, 148 TrialNet subjects completed 549 tests with up to 2 MMTT and 2 GST tests on separate days, and 118 ECPT subjects completed 348 tests (up to 3 each) with either two MMTTs or two GSTs. RESULTS: Among individuals with up to 4 years' duration of type 1 diabetes, >85% had measurable stimulated C-peptide values. The MMTT stimulus produced significantly higher concentrations of C-peptide than the GST. Whereas both tests were highly reproducible, the MMTT was significantly more so (R(2) = 0.96 for peak C-peptide response). Overall, the majority of subjects preferred the MMTT, and there were few adverse events. Some older subjects preferred the shorter duration of the GST. Nausea was reported in the majority of GST studies, particularly in the young age-group. CONCLUSIONS: The MMTT is preferred for the assessment of beta-cell function in therapeutic trials in type 1 diabetes.
  •  
5.
  • Holst, Birgitte, et al. (författare)
  • G Protein-Coupled Receptor 39 Deficiency Is Associated with Pancreatic Islet Dysfunction
  • 2009
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 150, s. 2577-2585
  • Tidskriftsartikel (refereegranskat)abstract
    • G protein-coupled receptor (GPR)-39 is a seven-transmembrane receptor expressed mainly in endocrine and metabolic tissues that acts as a Zn++ sensor signaling mainly through the G(q) and G(12/13) pathways. The expression of GPR39 is regulated by hepatocyte nuclear factor (HNF)-1 alpha and HNF-4 alpha, and in the present study, we addressed the importance of GPR39 for glucose homeostasis and pancreatic islets function. The expression and localization of GPR39 were characterized in the endocrine pancreas and pancreatic cell lines. Gpr39(-/-) mice were studied in vivo, especially in respect of glucose tolerance and insulin sensitivity, and in vitro in respect of islet architecture, gene expression, and insulin secretion. Gpr39 was down-regulated on differentiation of the pluripotent pancreatic cell line AR42J cells toward the exocrine phenotype but was along with Pdx-1 strongly up-regulated on differentiation toward the endocrine phenotype. Immunohistochemistry demonstrated that GRP39 is localized selectively in the insulin-storing cells of the pancreatic islets as well as in the duct cells of the exocrine pancreas. Gpr39(-/-) mice displayed normal insulin sensitivity but moderately impaired glucose tolerance both during oral and iv glucose tolerance tests, and Gpr39(-/-) mice had decreased plasma insulin response to oral glucose. Islet architecture was normal in the Gpr39 null mice, but expression of Pdx-1 and Hnf-1 alpha was reduced. Isolated, perifused islets from Gpr39 null mice secreted less insulin in response to glucose stimulation than islets from wild-type littermates. It is concluded that GPR39 is involved in the control of endocrine pancreatic function, and it is suggested that this receptor could be a novel potential target for the treatment of diabetes. (Endocrinology 150: 2577-2585, 2009)
  •  
6.
  • Kuhre, Rune E., et al. (författare)
  • No direct effect of SGLT2 activity on glucagon secretion
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:6, s. 1011-1023
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Sodium–glucose cotransporter (SGLT) 2 inhibitors constitute a new class of glucose-lowering drugs, but they increase glucagon secretion, which may counteract their glucose-lowering effect. Previous studies using static incubation of isolated human islets or the glucagon-secreting cell line α-TC1 suggested that this results from direct inhibition of alpha cell SGLT1/2-activity. The aim of this study was to test whether the effects of SGLT2 on glucagon secretion demonstrated in vitro could be reproduced in a more physiological setting. Methods: We explored the effect of SGLT2 activity on glucagon secretion using isolated perfused rat pancreas, a physiological model for glucagon secretion. Furthermore, we investigated Slc5a2 (the gene encoding SGLT2) expression in rat islets as well as in mouse and human islets and in mouse and human alpha, beta and delta cells to test for potential inter-species variations. SGLT2 protein content was also investigated in mouse, rat and human islets. Results: Glucagon output decreased three- to fivefold within minutes of shifting from low (3.5 mmol/l) to high (10 mmol/l) glucose (4.0 ± 0.5 pmol/15 min vs 1.3 ± 0.3 pmol/15 min, p < 0.05). The output was unaffected by inhibition of SGLT1/2 with dapagliflozin or phloridzin or by addition of the SGLT1/2 substrate α-methylglucopyranoside, whether at low or high glucose concentrations (p = 0.29–0.99). Insulin and somatostatin secretion (potential paracrine regulators) was also unaffected. Slc5a2 expression and SGLT2 protein were marginal or below detection limit in rat, mouse and human islets and in mouse and human alpha, beta and delta cells. Conclusions/interpretation: Our combined data show that increased plasma glucagon during SGLT2 inhibitor treatment is unlikely to result from direct inhibition of SGLT2 in alpha cells, but instead may occur downstream of their blood glucose-lowering effects.
  •  
7.
  • Larsen, Claus M., et al. (författare)
  • Interleukin-1-receptor antagonist in type 2 diabetes mellitus
  • 2007
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 356:15, s. 1517-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1(beta) in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell proliferation, and apoptosis. Methods: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive placebo. At baseline and at 13 weeks, all patients underwent an oral glucose-tolerance test, followed by an intravenous bolus of 0.3 g of glucose per kilogram of body weight, 0.5 mg of glucagon, and 5 g of arginine. In addition, 35 patients underwent a hyperinsulinemic-euglycemic clamp study. The primary end point was a change in the level of glycated hemoglobin, and secondary end points were changes in beta-cell function, insulin sensitivity, and inflammatory markers. Results: At 13 weeks, in the anakinra group, the glycated hemoglobin level was 0.46 percentage point lower than in the placebo group (P=0.03); C-peptide secretion was enhanced (P=0.05), and there were reductions in the ratio of proinsulin to insulin (P=0.005) and in levels of interleukin-6 (P<0.001) and C-reactive protein (P=0.002). Insulin resistance, insulin-regulated gene expression in skeletal muscle, serum adipokine levels, and the body-mass index were similar in the two study groups. Symptomatic hypoglycemia was not observed, and there were no apparent drug-related serious adverse events. Conclusions: The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic inflammation.
  •  
8.
  • Larsen, Claus M., et al. (författare)
  • Sustained Effects of Interleukin-1 Receptor Antagonist Treatment in Type 2 Diabetes
  • 2009
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 32:9, s. 1663-1668
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - Interleukin (IL)-1 impairs insulin secretion and induces P-cell apoptosis. Pancreatic beta-cell IL-1 expression is increased and interleukin-1 receptor antagonist (IL-1Ra) expression reduced in patients with type 2 diabetes. Treatment with recombinant IL-1Ra improves glycemia and P-cell function and reduces inflammatory markers in patients with type 2 diabetes. Here we investigated the durability of these responses. RESEARCH DESIGN AND METHODS - Among 70 ambulatory patients who had type 2 diabetes, A1C >7.5%, and BMI >27 kg/m(2) and were randomly assigned to receive 13 weeks of anakinra, a recombinant human IL-1Ra, or placebo, 67 completed treatment and were included in this double-blind 39-week follow-up study. Primary outcome was change in P-cell function after anakinra withdrawal. Analysis was done by intention to treat. RESULTS - Thirty-nine weeks after anakinra withdrawal, the proinsulin-to-insulin (PI/I) ratio but not stimulated C-peptide remained improved (by -0.07 [95% CI -0.14 to -0.02], P = 0.011) compared with values in placebo-treated patients. Interestingly, a subgroup characterized by genetically determined low baseline IL-1Ra serum levels maintained the improved stimulated C-peptide obtained by 13 weeks of IL-1Ra treatment. Reductions in C-reactive protein (-3.2 mg/l [-6.2 to -1.1], P = 0.014) and in IL-6 (-1.4 mg/l [-2.6 to -0.3], P = 0.036) were maintained until the end of study. CONCLUSIONS - IL-1 blockade with anakinra induces improvement of the PIA ratio and markers of systemic inflammation lasting 39 weeks after treatment withdrawal.
  •  
9.
  • Makeeva, Natalia, 1977- (författare)
  • Role of MAP Kinases in the Life and Death of Beta-cells
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of diabetes mellitus depends on the balance between beta-cell proliferation and death. As mitogen-activated protein kinases (MAPK) may control this balance, the aim of this study was to investigate the events leading to MAPK activation in beta-cells and the consequences of these events. Overexpression of the SH2-domain containing adaptor protein Shb resulted in the assembly and activation of multiunit complex consisting of at least Shb, IRS-1, IRS-2, FAK and PI3K. Consequently, the phosphorylation of Akt was enhanced under basal conditions in Shb overexpression cells. This was paralleled by an attenuated activation of the MAP kinases ERK1/2. Thus, Shb-induced alterations in the IRS-1/PI3K/Akt/ERK pathway might explain the increased proliferation and apoptosis of beta-cells overexpressing Shb.The importance of the MAP kinase p38 in nitric oxide- and cytokine-induced beta-cell death was also investigated. Knock-down of p38 expression resulted in a lowered cell death rate in response to a nitric oxide donor. In transient transfections MKK3 over-expression resulted in increased p38 phosphorylation in RIN-5AH cells. In addition, a short-term MKK3 expression resulted in increased cytokine-induced cell death. A nitric oxide synthase inhibitor abolished the MKK3-potentiating effect on cytokine-induced cell death and inhibitors of phosphatases enhanced MKK3-stimulated p38 phosphorylation. Finally, as the dominant negative mutant of MKK3 did not affect cytokine-induced p38 phosphorylation, and as wild type MKK3 did not influence p38 autophosphorylation, it may be that p38 is activated by MKK3/6-independent pathways in response to cytokines and nitric oxide.In further support for an MKK3/6-indepedent mechanism, the adaptor protein TAB1 significantly increased the cytokine- and nitric oxide-stimulated phosphorylation of p38. The TAB1-mediated activation of p38 was paralleled by a compensatory inhibition of ERK and JNK. In summary, p38 MAPK, activated mainly by TAB1, promotes, at least in part, beta-cell death in response to cytokines or nitric oxide.
  •  
10.
  • Mojtaba Ghiasi, Seyed, et al. (författare)
  • The Endoplasmic Reticulum Chaperone Glucose-Regulated Protein 94 is Essential for Proinsulin Handling
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:4, s. 747-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Although endoplasmic reticulum (ER) chaperone binding to mutant proinsulin has been reported, the role of protein chaperones in the handling of wild-type proinsulin is under-investigated. Here, we have explored the importance of glucose regulated protein 94 (GRP94), a prominent ER chaperone known to fold insulin-like growth factors, in proinsulin handling within β-cells. We found that GRP94 co-immunoprecipitated with proinsulin and that inhibition of GRP94 function and/or expression reduced glucose-dependent insulin secretion, shortened proinsulin half-life and lowered intracellular proinsulin and insulin levels. This phenotype was accompanied by post-ER proinsulin misprocessing and higher numbers of enlarged insulin granules that contained amorphic material with reduced immunogold staining for mature insulin. Insulin granule exocytosis was two-fold accelerated but the secreted insulin had diminished bioactivity. Moreover, GRP94 knockdown or knockout in β-cells selectively activated Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK), without increasing apoptosis levels. Finally, GRP94 mRNA was overexpressed in islets from T2D patients. We conclude that GRP94 is a chaperone crucial for proinsulin handling and insulin secretion.
  •  
11.
  • Nguyet Pham, Minh, et al. (författare)
  • Serum adipokines as biomarkers of beta-cell function in patients with type 1 diabetes: positive association with leptin and resistin and negative association with adiponectin
  • 2013
  • Ingår i: Diabetes/Metabolism Research Reviews. - : John Wiley and Sons. - 1520-7552 .- 1520-7560. ; 29:2, s. 166-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Background We investigated the adipokines adiponectin, leptin and resistin as serum biomarkers of beta-cell function in patients with type 1 diabetes. Methods One hundred and eighteen patients with type 1 diabetes (20.3 +/- 7.5years) diagnosed andlt;5years underwent standardized mixed meal test (MMTT) for 2h. Systemic concentrations of C-peptide, adiponectin, leptin and resistin obtained during MMTT were measured and compared between patient groups by multiple regression analysis. Results Patients were divided by their adipokine levels in subgroups above or below the median level (high versus low). High adiponectin levels (andgt;10.6 mu g/mL) were associated with lower C-peptide compared to the low adiponectin subgroup (pandlt;0.03). Increased leptin or resistin concentrations associated positively with beta-cell function even after adjustment for metabolic confounders (pandlt;0.04). The described associations between adipokines and C-peptide concentrations persisted in Spearman correlation tests (pandlt;0.05). Serum adipokines fell during MMTT (pandlt;0.05). Conclusions Serum adipokine levels differentially correlate with beta-cell function in type 1 diabetes independent of BMI or metabolic control. Serum adipokines should be investigated as biomarkers of beta-cell function in prospective studies and intervention trials in type 1 diabetes.
  •  
12.
  • Singh, Kailash (författare)
  • Regulatory T cells in type 1 diabetes: the role of IL-35 in counteracting the disease
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 1 diabetes (T1D) is etiologically considered as an autoimmune disease, where insulin-producing β-cells are damaged by autoimmune attacks. Regulatory T (Treg) cells are immune homeostasis cells. In the present thesis I aimed to investigate the role of Treg cells and other immune cells in the early development of T1D. In order to do that, we first determined which immune cells that are altered at an early stage of the T1D development. We found that dendritic cells and plasmacytoid dendritic cells induce the initial immune response.Next, we investigated the role of Treg cells in multiple low dose streptozotocin (MLDSTZ) induced T1D and in NOD mice. We found that the numbers of Treg cells were increased in both MLDSTZ and NOD mice when the MLDSTZ mice were hyperglycemic. However, the increased Treg cells showed a decreased production of anti-inflammatory cytokines (IL-10, IL-35 and TGF-β) and an increased expression of pro-inflammatory cytokines (IFN-γ and IL-17a). These results revealed that Treg cells switch their phenotype under T1D conditions.IL-35 administration effectively prevented the development of, and reversed established MLDSTZ induced T1D. Treg cells from IL-35 treated mice showed an increased expression of the Eos transcription factor, accompanied by an increased expression of IL-35 and a decreased expression of IFN-γ and IL-17a. These data indicate that IL-35 administration counteracted the early development of T1D by maintaining the phenotype of the Treg cells. Furthermore, IL-35 administration reversed established T1D in the NOD mouse model by maintaining the phenotype of Treg cells, seemingly by inducing the expression of Eos. Moreover, the circulating level of IL-35 was significantly lowered in both new onset and long-standing T1D patients compared to healthy controls. In addition, patients with T1D with remaining C-peptide had significantly higher levels of IL-35 than patients lacking C-peptide, suggesting that IL-35 might prevent the loss of β-cell mass. In line with this hypothesis, we found that LADA patients had a higher proportion of IL-35+ tolerogenic antigen presenting cells than T1D patients.Subsequently, we determined the proportions of IL-35+ Treg cells and IL-17a+ Treg cells in T1D patients with diabetic nephropathy (DN), which were age, sex and BMI matched with healthy controls and T1D patients. The proportion of IL-35+ Treg cells was decreased in DN and T1D patients, but IL-17a+ Treg cells were more abundant than in healthy controls. Furthermore, we found that the number of Foxp3+ Treg cells was increased in the kidneys of MLDSTZ mice. However, infiltration of mononuclear cells was seen in kidneys of these mice. In addition, kidney tissues of IL-35 treated MLDSTZ mice did not show any mononuclear cell infiltration. These results demonstrate that IL-35 may be used to prevent mononuclear cell infiltration in kidney diseases.Our findings indicate that the numbers of Foxp3+ Treg cells are increased in T1D, but that these Treg cells fail to counteract the ongoing immune assault in islets and kidneys of hyperglycemic mice. This could be explained by a phenotypic shift of the Treg cells under hyperglycemic conditions. IL-35 administration reversed established T1D in two different animal models of T1D and prevented mononuclear cell infiltration in the kidneys by maintaining the phenotype of Treg cells.
  •  
13.
  • Størling, Joachim, et al. (författare)
  • Apolipoprotein CIII reduces proinflammatory cytokine-induced apoptosis in rat pancreatic islets via the Akt prosurvival pathway
  • 2011
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 152:8, s. 3040-3048
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic β-cells in the absence of inflammatory stress. Here, we investigated the effects of ApoCIII on function, signaling, and viability in intact rat pancreatic islets exposed to proinflammatory cytokines to model the intraislet inflammatory milieu in T1D. In contrast to earlier observations in mouse β-cells, exposure of rat islets to ApoCIII alone (50 μg/ml) did not cause apoptosis. In the presence of the islet-cytotoxic cytokines IL-1β + interferon-γ, ApoCIII reduced cytokine-mediated islet cell death and impairment of β-cell function. ApoCIII had no effects on mitogen-activated protein kinases (c-Jun N-terminal kinase, p38, and ERK) and had no impact on IL-1β-induced c-Jun N-terminal kinase activation. However, ApoCIII augmented cytokine-mediated nitric oxide (NO) production and inducible NO synthase expression. Further, ApoCIII caused degradation of the nuclear factor κB-inhibitor inhibitor of κB and stimulated Ser473-phosphorylation of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces rat pancreatic islet cell apoptosis via Akt.
  •  
14.
  • Thorsen, Steffen U, et al. (författare)
  • Interaction Between Dietary Iron Intake and Genetically Determined Iron Overload : Risk of Islet Autoimmunity and Progression to Type 1 Diabetes in the TEDDY Study
  • 2023
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 46:5, s. 1014-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To examine whether iron intake and genetically determined iron overload interact in predisposing to the development of childhood islet autoimmunity (IA) and type 1 diabetes (T1D).RESEARCH DESIGN AND METHODS: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, 7,770 genetically high-risk children were followed from birth until the development of IA and progression to T1D. Exposures included energy-adjusted iron intake in the first 3 years of life and a genetic risk score (GRS) for increased circulating iron.RESULTS: We found a U-shaped association between iron intake and risk of GAD antibody as the first autoantibody. In children with GRS ≥2 iron risk alleles, high iron intake was associated with an increased risk of IA, with insulin as first autoantibody (adjusted hazard ratio 1.71 [95% CI 1.14; 2.58]) compared with moderate iron intake.CONCLUSIONS: Iron intake may alter the risk of IA in children with high-risk HLA haplogenotypes.
  •  
15.
  • von Hertzen, Leena, et al. (författare)
  • Helsinki alert of biodiversity and health
  • 2015
  • Ingår i: Annals of Medicine. - : Informa UK Limited. - 1365-2060 .- 0785-3890. ; 47:3, s. 218-225
  • Forskningsöversikt (refereegranskat)abstract
    • Urban living in built environments, combined with the use of processed water and food, may not provide the microbial stimulation necessary for a balanced development of immune function. Many chronic inflammatory disorders, including allergic, autoimmune, metabolic, and even some behavioural disorders, are linked to alteration in the human commensal microbiota. Sedentary lifestyle is associated with reduced exposure to a broad spectrum of environmental micro-organisms and surplus energy balance, both risk factors of chronic inflammatory disorders. According to the Biodiversity Hypothesis, an environment with diverse macrobiota and microbiota modifies and enriches the human microbiota, which in turn is crucial in the development and maintenance of appropriate immune function. These issues were discussed in the symposium 'Chronic Inflammation, Lifestyle and Environment ', held in Helsinki, 20 - 22 August 2014, under the sponsorship of the Yrjo Jahnsson Foundation. This paper briefly outlines the recent findings in the context of the environment, lifestyle, and health; discusses the forces that undermine immune tolerance in urban environments; and highlights the possibilities to restore broken immune tolerance among urban dwellers, summarizing the main messages in four statements and calling for actions to combat major public health threats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy