SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mao Jian Feng) "

Sökning: WFRF:(Mao Jian Feng)

  • Resultat 1-44 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Zhang, Huai, et al. (författare)
  • A global survey on the use of the international classification of diseases codes for metabolic dysfunction-associated fatty liver disease.
  • 2024
  • Ingår i: Hepatology international. - 1936-0541.
  • Tidskriftsartikel (refereegranskat)abstract
    • With the implementation of the 11th edition of the International Classification of Diseases (ICD-11) and the publication of the metabolic dysfunction-associated fatty liver disease (MAFLD) nomenclature in 2020, it is important to establish consensus for the coding of MAFLD in ICD-11. This will inform subsequent revisions of ICD-11.Using the Qualtrics XM and WJX platforms, questionnaires were sent online to MAFLD-ICD-11 coding collaborators, authors of papers, and relevant association members.A total of 890 international experts in various fields from 61 countries responded to the survey. We also achieved full coverage of provincial-level administrative regions in China. 77.1% of respondents agreed that MAFLD should be represented in ICD-11 by updating NAFLD, with no significant regional differences (77.3% in Asia and 76.6% in non-Asia, p=0.819). Over 80% of respondents agreed or somewhat agreed with the need to assign specific codes for progressive stages of MAFLD (i.e. steatohepatitis) (92.2%), MAFLD combined with comorbidities (84.1%), or MAFLD subtypes (i.e., lean, overweight/obese, and diabetic) (86.1%).This global survey by a collaborative panel of clinical, coding, health management and policy experts, indicates agreement that MAFLD should be coded in ICD-11. The data serves as a foundation for corresponding adjustments in the ICD-11 revision.
  •  
5.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
6.
  • Cheng, Shi-Ping, et al. (författare)
  • Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger
  • 2021
  • Ingår i: Horticulture Research. - : Springer Nature. - 2052-7276. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.
  •  
7.
  • Guo, Jing-Fang, et al. (författare)
  • Genomic clines across the species boundary between a hybrid pine and its progenitor in the eastern Tibetan Plateau
  • 2023
  • Ingår i: Plant Communications. - : Cell Press. - 2590-3462. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Most species have clearly defined distribution ranges and ecological niches. The genetic and ecological causes of species differentiation and the mechanisms that maintain species boundaries between newly evolved taxa and their progenitors are, however, less clearly defined. This study investigated the genetic structure and clines in Pinus densata, a pine of hybrid origin on the southeastern Tibetan Plateau, to gain an understanding of the contemporary dynamics of species barriers. We analyzed genetic diversity in a range-wide collection of P. densata and representative populations of its progenitors, Pinus tabuliformis and Pinus yunnanensis, using exome capture sequencing. We detected four distinct genetic groups within P. densata that reflect its migration history and major gene-flow barriers across the landscape. The demographies of these genetic groups in the Pleistocene were associated with regional glaciation histories. Interestingly, population sizes rebounded rapidly during interglacial periods, suggesting persistence and resilience of the species during the Quaternary ice age. In the contact zone between P. densata and P. yunnanensis, 3.36% of the analyzed loci (57 849) showed exceptional patterns of introgression, suggesting their potential roles in either adaptive introgression or reproductive isolation. These outliers showed strong clines along critical climate gradients and enrichment in a number of biological processes relevant to high-altitude adaptation. This indicates that ecological selection played an important role in generating genomic heterogeneity and a genetic barrier across a zone of species transition. Our study highlights the forces that operate to maintain species boundaries and promote speciation in the Qinghai-Tibetan Plateau and other mountain systems.
  •  
8.
  • Guo, Jing-Fang, et al. (författare)
  • Low genetic diversity and population connectivity fuel vulnerability to climate change for the Tertiary relict pine Pinus bungeana
  • 2023
  • Ingår i: Journal of Systematics and Evolution. - : John Wiley & Sons. - 1674-4918 .- 1759-6831. ; 61:1, s. 143-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Endemic species are important components of regional biodiversity and hold the key to understanding local adaptation and evolutionary processes that shape species distributions. This study investigated the biogeographic history of a relict conifer Pinus bungeana Zucc. ex Endl. confined to central China. We examined genetic diversity in P. bungeana using genotyping-by-sequencing and chloroplast and mitochondrial DNA markers. We performed spatial and temporal inference of recent genetic and demographic changes, and dissected the impacts of geography and environmental gradients on population differentiation. We then projected P. bungeana's risk of decline under future climates. We found extremely low nucleotide diversity (average π 0.0014), and strong population structure (global FST 0.234) even at regional scales, reflecting long-term isolation in small populations. The species experienced severe bottlenecks in the early Pliocene and continued to decline in the Pleistocene in the western distribution, whereas the east expanded recently. Local adaptation played a small (8%) but significant role in population diversity. Low genetic diversity in fragmented populations makes the species highly vulnerable to climate change, particularly in marginal and relict populations. We suggest that conservation efforts should focus on enhancing gene pool and population growth through assisted migration within each genetic cluster to reduce the risk of further genetic drift and extinction.
  •  
9.
  • Hu, Xian-Ge, et al. (författare)
  • De Novo Transcriptome Assembly and Characterization for the Widespread and Stress-Tolerant Conifer Platycladus orientalis
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Platycladus orientalis, of the family Cupressaceae, is a widespread conifer throughout China and is extensively used for ecological reforestation, horticulture, and in medicine. Transcriptome assemblies are required for this ecologically important conifer for understanding genes underpinning adaptation and complex traits for breeding programs. To enrich the species' genomic resources, a de novo transcriptome sequencing was performed using Illumina paired-end sequencing. In total, 104,073,506 high quality sequence reads (approximately 10.3 Gbp) were obtained, which were assembled into 228,948 transcripts and 148,867 unigenes that were longer than 200 nt. Quality assessment using CEGMA showed that the transcriptomes obtained were mostly complete for highly conserved core eukaryotic genes. Based on similarity searches with known proteins, 62,938 (42.28% of all unigenes), 42,158 (28.32%), and 23,179 (15.57%) had homologs in the Nr, GO, and KOG databases, 25,625 (17.21%) unigenes were mapped to 322 pathways by BLASTX comparison against the KEGG database and 1,941 unigenes involved in environmental signaling and stress response were identified. We also identified 43 putative terpene synthase (TPS) functional genes loci and compared them with TPSs from other species. Additionally, 5,296 simple sequence repeats (SSRs) were identified in 4,715 unigenes, which were assigned to 142 motif types. This is the first report of a complete transcriptome analysis of P. orientalis. These resources provide a foundation for further studies of adaptation mechanisms and molecular-based breeding programs.
  •  
10.
  • Hu, Xian-Ge, et al. (författare)
  • Global transcriptome analysis of Sabina chinensis (Cupressaceae), a valuable reforestation conifer
  • 2016
  • Ingår i: Molecular breeding. - : Springer Science and Business Media LLC. - 1380-3743 .- 1572-9788. ; 36:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sabina chinensis has broad distribution in China and is widely used in the reforestation and as an urban tree. The species is frost resistant and grows well on contaminated soils and is becoming valuable for soil remediation and protection against air pollution. Breeding programs aimed at exploiting the species' unique properties were handicapped by the lack of basic genetic information. Here, we established a transcriptomic profiling study from five different tissues using RNA-Seq to gain insight on the functional genes and the development of molecular markers for breeding and conservation purposes. In total 90,382,108 high-quality sequence reads (similar to 9.0 bp) were obtained, and 116,814 unigenes (>= 200 nt) were assembled. Of which, 45,026 and 15,589 unigenes were mapped to the Nr and KOG databases, 31,288 (26.78 %) and 17,596 (15.06 %) were annotated to GO and KEGG database, respectively. Additionally, 28,843 (24.68 %) and 43,033 (36.84 %) S. chinensis unigenes were aligned to the Pinus taeda draft genome and PLAZA2.5 database, respectively. A total of 4570 simple sequence repeat (SSR) motifs were identified in the unigenes. Furthermore, we obtained 6 (12.5 %) polymorphic and 21 (43.75 %) monomorphic loci in the verification of 48 randomly selected SSR loci. This study represents the first transcriptome data of S. chinensis and confirms that the transcriptome assembly data of S. chinensis are a useful resource for EST-SSR loci development. The substantial number of transcripts obtained will aid our understanding of the species adaptation mechanisms and provide valuable genomic information for conservation and breeding applications.
  •  
11.
  • Hu, Xian-Ge, et al. (författare)
  • Predicting Impacts of Future Climate Change on the Distribution of the Widespread Conifer Platycladus orientalis
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Chinese thuja (Platycladus orientalis) has a wide but fragmented distribution in China. It is an important conifer tree in reforestation and plays important roles in ecological restoration in the arid mountains of northern China. Based on high-resolution environmental data for current and future scenarios, we modeled the present and future suitable habitat for P. orientalis, evaluated the importance of environmental factors in shaping the species' distribution, and identified regions of high risk under climate change scenarios. The niche models showed that P. orientalis has suitable habitat of ca. 4.2x10(6) km(2) across most of eastern China and identified annual temperature, monthly minimum and maximum ultraviolet-B radiation and wet-day frequency as the critical factors shaping habitat availability for P. orientalis. Under the low concentration greenhouse gas emissions scenario, the range of the species may increase as global warming intensifies; however, under the higher concentrations of emissions scenario, we predicted a slight expansion followed by contraction in distribution. Overall, the range shift to higher latitudes and elevations would become gradually more significant. The information gained from this study should be an useful reference for implementing long-term conservation and management strategies for the species.
  •  
12.
  • Jia, Kai-Hua, et al. (författare)
  • Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome
  • 2021
  • Ingår i: Horticulture Research. - : Oxford University Press (OUP). - 2052-7276 .- 2662-6810. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization plays a key role in plant evolution, but the forces driving the fate of homoeologs in polyploid genomes, i.e., paralogs resulting from a whole-genome duplication (WGD) event, remain to be elucidated. Here, we present a chromosome-scale genome assembly of tetraploid scarlet sage (Salvia splendens), one of the most diverse ornamental plants. We found evidence for three WGD events following an older WGD event shared by most eudicots (the γ event). A comprehensive, spatiotemporal, genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries, which could be associated with genomic rearrangements, transposable element proximity discrepancies, coding sequence variation, selection pressure, and transcription factor binding site differences. The observed differences between homoeologs may reflect the first step toward sub- and/or neofunctionalization. This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.
  •  
13.
  • Jia, Kai-Hua, et al. (författare)
  • Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae)
  • 2020
  • Ingår i: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571. ; 13:4, s. 665-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying populations' adaptive genetic variation and their response to climate change are critical to reforestation's seed source selection, forest management decisions, and gene conservation. Landscape genomics combined with geographic and environmental information provide an opportunity to interrogate forest populations' genome-wide variation for understanding the extent to which evolutionary forces shape past and contemporary populations' genetic structure, and identify those populations that may be most at risk under future climate change. Here, we used genotyping by sequencing to generate over 11,000 high-quality variants from Platycladus orientalis range-wide collection to evaluate its diversity and to predict genetic offset under future climate scenarios. Platycladus orientalis is a widespread conifer in China with significant ecological, timber, and medicinal values. We found population structure and evidences of isolation by environment, indicative of adaptation to local conditions. Gradient forest modeling identified temperature-related variables as the most important environmental factors influencing genetic variation and predicted areas with higher risk under future climate change. This study provides an important reference for forest resource management and conservation for P. orientalis.
  •  
14.
  • Jin, Yuqing, et al. (författare)
  • Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae)
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Platycladus orientalis, a widespread conifer with long lifespan and significant adaptability. It is much used in reforestation in north China and commonly planted in central Asia. With the increasing demand for plantation forest in central to north China, breeding programs are progressively established for this species. Efficient use of breeding resources requires good understanding of the genetic value of the founder breeding materials. This study investigated the distribution of genetic variation in 192 elite trees collected for the breeding program for the central range of the species. We developed first set of 27 polymorphic EST-derived SSR loci for the species from transcriptome/genome data. After examination of amplification quality, 10 loci were used to evaluate the genetic variation in the breeding population. We found moderate genetic diversity (average H-e = 0.348) and low population differentiation (Fst = 0.011). Extensive admixture and no significant geographic population structure characterized this set of collections. Our analyses of the diversity and population structure are important steps toward a long-term sustainable deployment of the species and provide valuable genetic information for conservation and breeding applications.
  •  
15.
  • Jin, Yuqing, et al. (författare)
  • Genome-Wide Variant Identification and High-Density Genetic Map Construction Using RADseq for Platycladus orientalis (Cupressaceae)
  • 2019
  • Ingår i: G3. - : The Genetics Society of America. - 2160-1836. ; 9:11, s. 3663-3672
  • Tidskriftsartikel (refereegranskat)abstract
    • Platycladus orientalis is an ecologically important native conifer in Northern China and exotic species in many parts of the world; however, knowledge about the species' genetics and genome are very limited. The availability of well-developed battery of genetic markers, with large genome coverage, is a prerequisite for the species genetic dissection of adaptive attributes and efficient selective breeding. Here, we present a genome-wide genotyping method with double-digestion restriction site associated DNA sequencing (ddRAD-seq) that is effective in generating large number of Mendelian markers for genome mapping and other genetic applications. Using 139 megagametophytes collected from a single mother tree, we assembled 397,226 loci, of which 108,683 (27.4%) were polymorphic. After stringent filtering for 1:1 segregation ratio and missing rate of <20%, the remaining 23,926 loci (22% of the polymorphic loci) were ordered into 11 linkage groups (LGs) and distributed across 7,559 unique positions, with a total map length of 1,443 cM and an average spacing of 0.2 cM between adjacent unique positions. The 11 LGs correspond to the species' 11 haploid genome chromosome number. This genetic map is among few high-density maps available for conifers to date, and represents the first genetic map for P. orientalis. The information generated serves as a solid foundation not only for marker-assisted breeding efforts, but also for comparative conifer genomic studies.
  •  
16.
  • Li, Jian Feng, et al. (författare)
  • Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:50, s. 11711-11720
  • Tidskriftsartikel (refereegranskat)abstract
    • Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3–PBX1 fusions, ETV6–RUNX1–positive/ETV6–RUNX1–like, DUX4 fusions, ZNF384 fusions, BCR–ABL1/Ph–like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH–CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4–HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL. four decades, most of the recurring chromosomal abnormalities, including aneuploidy, chromosomal rearrangements/gene fusions (e.g., ETV6–RUNX1, BCR–ABL1, and TCF3–PBX1), and rearrangements of KMT2A (previously MLL), were identified by.
  •  
17.
  • Liu, Hui, et al. (författare)
  • Centromere-Specific Retrotransposons and Very-Long-Chain Fatty Acid Biosynthesis in the Genome of Yellowhorn (Xanthoceras sorbifolium, Sapindaceae), an Oil-Producing Tree With Significant Drought Resistance
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • In-depth genome characterization is still lacking for most of biofuel crops, especially for centromeres, which play a fundamental role during nuclear division and in the maintenance of genome stability. This study applied long-read sequencing technologies to assemble a highly contiguous genome for yellowhorn (Xanthoceras sorbifolium), an oil-producing tree, and conducted extensive comparative analyses to understand centromere structure and evolution, and fatty acid biosynthesis. We produced a reference-level genome of yellowhorn, ∼470 Mb in length with ∼95% of contigs anchored onto 15 chromosomes. Genome annotation identified 22,049 protein-coding genes and 65.7% of the genome sequence as repetitive elements. Long terminal repeat retrotransposons (LTR-RTs) account for ∼30% of the yellowhorn genome, which is maintained by a moderate birth rate and a low removal rate. We identified the centromeric regions on each chromosome and found enrichment of centromere-specific retrotransposons of LINE1 and Gypsy in these regions, which have evolved recently (∼0.7 MYA). We compared the genomes of three cultivars and found frequent inversions. We analyzed the transcriptomes from different tissues and identified the candidate genes involved in very-long-chain fatty acid biosynthesis and their expression profiles. Collinear block analysis showed that yellowhorn shared the gamma (γ) hexaploidy event with Vitis vinifera but did not undergo any further whole-genome duplication. This study provides excellent genomic resources for understanding centromere structure and evolution and for functional studies in this important oil-producing plant.
  •  
18.
  • Liu, Hui, et al. (författare)
  • Repetitive elements, sequence turnover and cyto-nuclear gene transfer in gymnosperm mitogenomes
  • 2022
  • Ingår i: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the three genomes in plant cells, the mitochondrial genome (mitogenome) is the least studied due to complex recombination and intergenomic transfer. In gymnosperms only ∼20 mitogenomes have been released thus far, which hinders a systematic investigation into the tempo and mode of mitochondrial DNA evolution in seed plants. Here, we report the complete mitogenome sequence of Platycladus orientalis (Cupressaceae). This mitogenome is assembled as two circular-mapping chromosomes with a size of ∼2.6 Mb and which contains 32 protein-coding genes, three rRNA and seven tRNA genes, and 1,068 RNA editing sites. Repetitive sequences, including dispersed repeats, transposable elements (TEs), and tandem repeats, made up 23% of the genome. Comparative analyses with 17 other mitogenomes representing the five gymnosperm lineages revealed a 30-fold difference in genome size, 80-fold in repetitive content, and 230-fold in substitution rate. We found dispersed repeats are highly associated with mitogenome expansion (r = 0.99), and most of them were accumulated during recent duplication events. Syntenic blocks and shared sequences between mitogenomes decay rapidly with divergence time (r = 0.53), with the exceptions of Ginkgo and Cycads which retained conserved genome structure over long evolutionary time. Our phylogenetic analysis supports a sister group relationship of Cupressophytes and Gnetophytes; both groups are unique in that they lost 8–12 protein-coding genes, of which 4–7 intact genes are likely transferred to nucleus. These two clades also show accelerated and highly variable substitution rates relative to other gymnosperms. Our study highlights the dynamic and enigmatic evolution of gymnosperm mitogenomes.
  •  
19.
  • Mao, Jian-Feng, et al. (författare)
  • Distinct niche divergence characterizes the homoploid hybrid speciation of Pinus densata on the Tibetan Plateau
  • 2011
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 177:4, s. 424-439
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological divergence and selection for novel adaptations to new habitats have been theoretically proposed to play important roles in promoting homoploid hybrid speciation (HHS). The successful establishment of Pinus densata on the Tibetan Plateau is one of the few known examples of HHS. In this study, we carried out extensive field expeditions to obtain representative coverage of occurrence sites of P. densata and its two putative parents. We then applied a series of geographic information system-based analyses to define the patterns of environmental variation within and among the three pine species, to remove potentially confounding effects of spatial autocorrelation in the environmental data due to allopatric ranges, and to build species distribution models. All results consistently indicated that the ecological preferences of P. densata and its parental species have diverged, and they identified candidate ecological factors associated with habitat-specific adaptation. Projections from niche modeling indicated that P. densata could extend across a vast range along the parallel valley systems of the southeastern Tibetan Plateau. Our findings provide evidence of a distinct niche shift in P. densata and support the hypothesis that local adaptation and geographic isolation help maintain and reinforce between-species differences and reproductive isolation in the species complex.
  •  
20.
  • Meng, Jingxiang, et al. (författare)
  • Adaptive Differentiation in Seedling Traits in a Hybrid Pine Species Complex, Pinus densata and Its Parental Species, on the Tibetan Plateau
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence from molecular genetics demonstrates that Pinus densata is a natural homoploid hybrid originating from the parent species Pinus tabuliformis and Pinus yunnanensis, and ecological selection may have played a role in the speciation of Pinus densata. However, data on differentiation in adaptive traits in the species complex are scarce. In this study, we performed a common garden test on 16 seedling traits to examine the differences between Pinus densata and its parental species in a high altitude environment. We found that among the 16 analyzed traits, 15 were significantly different among the species. Pinus tabuliformis had much earlier bud set and a relatively higher bud set ratio but poorer seedling growth, and Pinus yunnanensis had opposite responses for the same traits. Pinus densata had the greatest fitness with higher viability and growth rates than the parents. The relatively high genetic contribution of seedling traits among populations suggested that within each species the evolutionary background is complex. The correlations between the seedling traits of a population within a species and the environmental factors indicated different impacts of the environment on species evolution. The winter temperature is among the most important climate factors that affected the fitness of the three pine species. Our investigation provides empirical evidence on adaptive differentiation among this pine species complex at seedling stages.
  •  
21.
  • Nie, Shuai, et al. (författare)
  • Gapless genome assembly of azalea and multi-omics investigation into divergence between two species with distinct flower color
  • 2023
  • Ingår i: Horticulture Research. - : Oxford University Press. - 2662-6810 .- 2052-7276. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The genus Rhododendron (Ericaceae), with more than 1000 species highly diverse in flower color, is providing distinct ornamental values and a model system for flower color studies. Here, we investigated the divergence between two parental species with different flower color widely used for azalea breeding. Gapless genome assembly was generated for the yellow-flowered azalea, Rhododendron molle. Comparative genomics found recent proliferation of long terminal repeat retrotransposons (LTR-RTs), especially Gypsy, has resulted in a 125 Mb (19%) genome size increase in species-specific regions, and a significant amount of dispersed gene duplicates (13 402) and pseudogenes (17 437). Metabolomic assessment revealed that yellow flower coloration is attributed to the dynamic changes of carotenoids/flavonols biosynthesis and chlorophyll degradation. Time-ordered gene co-expression networks (TO-GCNs) and the comparison confirmed the metabolome and uncovered the specific gene regulatory changes underpinning the distinct flower pigmentation. B3 and ERF TFs were found dominating the gene regulation of carotenoids/flavonols characterized pigmentation in R. molle, while WRKY, ERF, WD40, C2H2, and NAC TFs collectively regulated the anthocyanins characterized pigmentation in the red-flowered R simsii. This study employed a multi-omics strategy in disentangling the complex divergence between two important azaleas and provided references for further functional genetics and molecular breeding.
  •  
22.
  • Nie, Shuai, et al. (författare)
  • Potential allopolyploid origin of Ericales revealed with gene-tree reconciliation
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Few incidents of ancient allopolyploidization (polyploidization by hybridization or merging diverged genomes) were previously revealed, although there is significant evidence for the accumulation of whole genome duplications (WGD) in plants. Here, we focused on Ericales, one of the largest and most diverse angiosperm orders with significant ornamental and economic value. Through integrating 24 high-quality whole genome data selected from ~ 200 Superasterids genomes/species and an algorithm of topology-based gene-tree reconciliation, we explored the evolutionary history of in Ericales with ancient complex. We unraveled the allopolyploid origin of Ericales and detected extensive lineage-specific gene loss following the polyploidization. Our study provided a new hypothesis regarding the origin of Ericales and revealed an instructive perspective of gene loss as a pervasive source of genetic variation and adaptive phenotypic diversity in Ericales.
  •  
23.
  • Nie, Shuai, et al. (författare)
  • Progress in phylogenetics, multi-omics and flower coloration studies in Rhododendron
  • 2024
  • Ingår i: Ornamental Plant Research. - : Maximum Academic Press. - 2769-2094. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • The genus Rhododendron exhibits an immense diversity of flower colors and represents one of the largest groups of woody plants, which is of great importance for ornamental plant research. This review summarizes recent progress in deciphering the genetic basis for flower coloration in Rhododendron. We describe advances in phylogenetic reconstruction and genome sequencing of Rhododendron species. The metabolic pathways of flower color are outlined, focusing on key structural and regulatory genes involved in pigment synthesis. Gene duplications and losses associated with color diversification are discussed. In addition, the application of multi-omics approaches and analysis of gene co-expression networks to elucidate complex gene regulatory mechanisms is emphasized. This synthesis of current knowledge provides a foundation for future research on the evolution of flower color diversity within the Rhododendron lineage. Ultimately, these discoveries will support breeding endeavors aimed at harnessing the genetics of flower coloration and developing novel cultivars that exhibit desired floral traits.
  •  
24.
  • Pan, Jin, et al. (författare)
  • Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers
  • 2015
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 15:4, s. 711-722
  • Tidskriftsartikel (refereegranskat)abstract
    • Flexibility and low cost make genotyping-by-sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI-MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference-free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000-11000 and 14751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking.
  •  
25.
  • Shi, Tian-Le, et al. (författare)
  • Differential gene expression and potential regulatory network of fatty acid biosynthesis during fruit and leaf development in yellowhorn (Xanthoceras sorbifolium), an oil-producing tree with significant deployment values
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Xanthoceras sorbifolium (yellowhorn) is a woody oil plant with super stress resistance and excellent oil characteristics. The yellowhorn oil can be used as biofuel and edible oil with high nutritional and medicinal value. However, genetic studies on yellowhorn are just in the beginning, and fundamental biological questions regarding its very long-chain fatty acid (VLCFA) biosynthesis pathway remain largely unknown. In this study, we reconstructed the VLCFA biosynthesis pathway and annotated 137 genes encoding relevant enzymes. We identified four oleosin genes that package triacylglycerols (TAGs) and are specifically expressed in fruits, likely playing key roles in yellowhorn oil production. Especially, by examining time-ordered gene co-expression network (TO-GCN) constructed from fruit and leaf developments, we identified key enzymatic genes and potential regulatory transcription factors involved in VLCFA synthesis. In fruits, we further inferred a hierarchical regulatory network with MYB-related (XS03G0296800) and B3 (XS02G0057600) transcription factors as top-tier regulators, providing clues into factors controlling carbon flux into fatty acids. Our results offer new insights into key genes and transcriptional regulators governing fatty acid production in yellowhorn, laying the foundation for efforts to optimize oil content and fatty acid composition. Moreover, the gene expression patterns and putative regulatory relationships identified here will inform metabolic engineering and molecular breeding approaches tailored to meet biofuel and bioproduct demands.
  •  
26.
  • Shi, Tian-Le, et al. (författare)
  • High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar
  • 2024
  • Ingår i: Plant Physiology. - : Oxford University Press. - 0032-0889 .- 1532-2548. ; 195:1, s. 652-670
  • Tidskriftsartikel (refereegranskat)abstract
    • Poplar (Populus) is a well-established model system for tree genomics and molecular breeding, and hybrid poplar is widely used in forest plantations. However, distinguishing its diploid homologous chromosomes is difficult, complicating advanced functional studies on specific alleles. In this study, we applied a trio-binning design and PacBio high-fidelity long-read sequencing to obtain haplotype-phased telomere-to-telomere genome assemblies for the 2 parents of the well-studied F1 hybrid “84K” (Populus alba × Populus tremula var. glandulosa). Almost all chromosomes, including the telomeres and centromeres, were completely assembled for each haplotype subgenome apart from 2 small gaps on one chromosome. By incorporating information from these haplotype assemblies and extensive RNA-seq data, we analyzed gene expression patterns between the 2 subgenomes and alleles. Transcription bias at the subgenome level was not uncovered, but extensive-expression differences were detected between alleles. We developed machine-learning (ML) models to predict allele-specific expression (ASE) with high accuracy and identified underlying genome features most highly influencing ASE. One of our models with 15 predictor variables achieved 77% accuracy on the training set and 74% accuracy on the testing set. ML models identified gene body CHG methylation, sequence divergence, and transposon occupancy both upstream and downstream of alleles as important factors for ASE. Our haplotype-phased genome assemblies and ML strategy highlight an avenue for functional studies in Populus and provide additional tools for studying ASE and heterosis in hybrids.
  •  
27.
  • Tian, Xue-Chan, et al. (författare)
  • Plant-LncPipe: a computational pipeline providing significant improvement in plant lncRNA identification
  • 2024
  • Ingår i: Horticulture Research. - 2662-6810 .- 2052-7276. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Long non-coding RNAs (lncRNAs) play essential roles in various biological processes, such as chromatin remodeling, post-transcriptional regulation, and epigenetic modifications. Despite their critical functions in regulating plant growth, root development, and seed dormancy, the identification of plant lncRNAs remains a challenge due to the scarcity of specific and extensively tested identification methods. Most mainstream machine learning-based methods used for plant lncRNA identification were initially developed using human or other animal datasets, and their accuracy and effectiveness in predicting plant lncRNAs have not been fully evaluated or exploited. To overcome this limitation, we retrained several models, including CPAT, PLEK, and LncFinder, using plant datasets and compared their performance with mainstream lncRNA prediction tools such as CPC2, CNCI, RNAplonc, and LncADeep. Retraining these models significantly improved their performance, and two of the retrained models, LncFinder-plant and CPAT-plant, alongside their ensemble, emerged as the most suitable tools for plant lncRNA identification. This underscores the importance of model retraining in tackling the challenges associated with plant lncRNA identification. Finally, we developed a pipeline (Plant-LncPipe) that incorporates an ensemble of the two best-performing models and covers the entire data analysis process, including reads mapping, transcript assembly, lncRNA identification, classification, and origin, for the efficient identification of lncRNAs in plants. The pipeline, Plant-LncPipe, is available at: https://github.com/xuechantian/Plant-LncRNA-pipline.
  •  
28.
  • Tian, Xue-Chan, et al. (författare)
  • Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood decay resistance (WDR) is marking the value of wood utilization. Many trees of the Lauraceae have exceptional WDR, as evidenced by their use in ancient royal palace buildings in China. However, the genetics of WDR remain elusive. Here, through comparative genomics, we revealed the unique characteristics related to the high WDR in Lauraceae trees. We present a 1.27-Gb chromosome-level assembly for Lindera megaphylla (Lauraceae). Comparative genomics integrating major groups of angiosperm revealed Lauraceae species have extensively shared gene microsynteny associated with the biosynthesis of specialized metabolites such as isoquinoline alkaloids, flavonoid, lignins and terpenoid, which play significant roles in WDR. In Lauraceae genomes, tandem and proximal duplications (TD/PD) significantly expanded the coding space of key enzymes of biosynthesis pathways related to WDR, which may enhance the decay resistance of wood by increasing the accumulation of these compounds. Among Lauraceae species, genes of WDR-related biosynthesis pathways showed remarkable expansion by TD/PD and conveyed unique and conserved motifs in their promoter and protein sequences, suggesting conserved gene collinearity, gene expansion and gene regulation supporting the high WDR. Our study thus reveals genomic profiles related to biochemical transitions among major plant groups and the genomic basis of WDR in the Lauraceae.
  •  
29.
  • Wang, Anqi, et al. (författare)
  • Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
  • 2023
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:12, s. 2065-2074
  • Tidskriftsartikel (refereegranskat)abstract
    • The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  •  
30.
  • Wang, Baosheng, 1983-, et al. (författare)
  • Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata
  • 2011
  • Ingår i: Molecular Ecology. - Leicester : Blackwell Scientific Publications. - 0962-1083 .- 1365-294X. ; 20:18, s. 3796-3811
  • Tidskriftsartikel (refereegranskat)abstract
    • Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range, the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history.
  •  
31.
  • Wang, Baosheng, 1983-, et al. (författare)
  • Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis
  • 2013
  • Ingår i: PLOS ONE. - : plosone. - 1932-6203. ; 8:6, s. e67345-
  • Tidskriftsartikel (refereegranskat)abstract
    • Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species' range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.
  •  
32.
  • Wang, Wen‐Bo, et al. (författare)
  • Chromosome‐scale genome assembly and insights into the metabolome and gene regulation of leaf color transition in an important oak species, Quercus dentata
  • 2023
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 238:5, s. 2016-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated.First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation.Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein–protein and DNA–protein interaction assays.Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.
  •  
33.
  • Xia, Hanhan, et al. (författare)
  • Combining mitochondrial and nuclear genome analyses to dissect the effects of colonization, environment, and geography on population structure in Pinus tabuliformis
  • 2018
  • Ingår i: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571. ; 11:10, s. 1931-1945
  • Tidskriftsartikel (refereegranskat)abstract
    • The phylogeographic histories of plants in East Asia are complex and shaped by both past large‐scale climatic oscillations and dramatic tectonic events. The impact of these historic events, as well as ecological adaptation, on the distribution of biodiversity remains to be elucidated. Pinus tabuliformis is the dominant coniferous tree in northern China, with a large distribution across wide environmental gradients. We examined genetic variation in this species using genotyping‐by‐sequencing and mitochondrial (mt) DNA markers. We found population structure on both nuclear and mt genomes with a geographic pattern that corresponds well with the landscape of northern China. To understand the contributions of environment, geography, and colonization history to the observed population structure, we performed ecological niche modeling and partitioned the among‐population genomic variance into isolation by environment (IBE), isolation by distance (IBD), and isolation by colonization (IBC). We used mtDNA, which is transmitted by seeds in pine, to reflect colonization. We found little impact of IBE, IBD, and IBC on variation in neutral SNPs, but significant impact of IBE on a group of outlier loci. The lack of IBC illustrates that the maternal history can be quickly eroded from the nuclear genome by high rates of gene flow. Our results suggest that genomic variation in P. tabuliformis is largely affected by neutral and stochastic processes, and the signature of local adaptation is visible only at robust outlier loci. This study enriches our understanding on the complex evolutionary forces that shape the distribution of genetic variation in plant taxa in northern China, and guides breeding, conservation, and reforestation programs for P. tabuliformis.
  •  
34.
  • Xing, Fangqian, et al. (författare)
  • Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:10, s. 1890-1902
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P.densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P.densata were seeded in a high-altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P.densata and between the two parental species, P.tabuliformis and P.yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P.densata. The eight needle traits (needle length, the mean number of stomata in sections 2mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P.densata. The similar needle features between the artificial hybrids and P.densata could be used to verify the homoploid hybrid origin of P.densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.
  •  
35.
  • Xu, Chao-Qun, et al. (författare)
  • Genome sequence of Malania oleifera, a tree with great value for nervonic acid production
  • 2019
  • Ingår i: GigaScience. - : Oxford University Press. - 2047-217X. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Malania oleifera, a member of the Olacaceae family, is an IUCN red listed tree, endemic and restricted to the Karst region of southwest China. This tree's seed is valued for its high content of precious fatty acids (especially nervonic acid). However, studies on its genetic makeup and fatty acid biogenesis are severely hampered by a lack of molecular and genetic tools. Findings We generated 51 Gb and 135Gb of raw DNA sequences, using Pacific Biosciences (PacBio) single-molecule real-time and 10x Genomics sequencing, respectively. A final genome assembly, with a scaffold N50 size of 4.65 Mb and a total length of 1.51Gb, was obtained by primary assembly based on PacBio long reads plus scaffolding with 10x Genomics reads. Identified repeats constituted approximate to 82% of the genome, and 24,064 protein-coding genes were predicted with high support. The genome has low heterozygosity and shows no evidence for recent whole genome duplication. Metabolic pathway genes relating to the accumulation of long-chain fatty acid were identified and studied in detail. Conclusions Here, we provide the first genome assembly and gene annotation for M. oleifera. The availability of these resources will be of great importance for conservation biology and for the functional genomics of nervonic acid biosynthesis.
  •  
36.
  • Xu, Jie, et al. (författare)
  • UV-B and UV-C radiation trigger both common and distinctive signal perceptions and transmissions in Pinus tabuliformis Carr.
  • 2022
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 42:8, s. 1587-1600
  • Tidskriftsartikel (refereegranskat)abstract
    • In plants, ultraviolet (UV)-light is an important driver for growth and natural distribution, and is also a valuable tool for manipulating productivity as well as biotic interactions. Understanding of plant responses to different UV radiation is sparse, especially from a systems biology perspective and particularly for conifers. Here, we evaluated the physiological and transcriptomic responses to the short-term application of high-irradiance UV-B and UV-C waves on Pinus tabuliformis Carr., a major conifer in Northern China. By undertaking time-ordered gene coexpression network analyses and network comparisons incorporating physiological traits and gene expression variation, we uncovered communalities but also differences in P. tabuliformis responses to UV-B and UV-C. Both types of spectral bands caused a significant inhibition of photosynthesis, and conversely, the improvement of antioxidant capacity, flavonoid production and signaling pathways related to stress resistance, indicating a clear switch from predominantly primary metabolism to enhanced defensive metabolism in pine. We isolated distinct subnetworks for photoreceptor-mediated signal transduction, maximum quantum efficiency of photosystem II (Fv/Fm) regulation and flavonoid biosynthesis in response to UV-B and UV-C radiation. From these subnetworks, we further identified phototropins as potentially important elements in both UV-B and UV-C signaling and, for the first time, suggesting peptide hormones to be involved in promoting flavonoid biosynthesis against UV-B, while these hormones seem not to be implicated in the defense against UV-C exposure. The present study employed an effective strategy for disentangling the complex physiological and genetic regulatory mechanisms in a nonmodel plant species, and thus, provides a suitable reference for future functional evaluations and artificial UV-light mediated growing strategies in plant production.
  •  
37.
  • Xu, Jie, et al. (författare)
  • UV-B-induced molecular mechanisms of stress physiology responses in the major northern Chinese conifer Pinus tabuliformis Carr
  • 2021
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 41:7, s. 1247-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • During their lifetimes, plants are exposed to different abiotic stress factors eliciting various physiological responses and triggering important defense processes. For UV-B radiation responses in forest trees, the genetics and molecular regulation remain to be elucidated. Here, we exposed Pinus tabuliformis Carr., a major conifer from northern China, to short-term high-intensity UV-B and employed a systems biology approach to characterize the early physiological processes and the hierarchical gene regulation, which revealed a temporal transition from primary to secondary metabolism, the buildup of enhanced antioxidant capacity and stress-signaling activation. Our findings showed that photosynthesis and biosynthesis of photosynthetic pigments were inhibited, while flavonoids and their related derivates biosynthesis, as well as glutathione and glutathione S-transferase mediated antioxidant processes, were enhanced. Likewise, stress-related phytohormones (jasmonic acid, salicylic acid and ethylene), kinase and reactive oxygen species signal transduction pathways were activated. Biological processes regulated by auxin and karrikin were, for the first time, found to be involved in plant defense against UV-B by promoting the biosynthesis of flavonoids and the improvement of antioxidant capacity in our research system. Our work evaluated the physiological and transcriptome perturbations in a conifer's response to UV-B, and generally, highlighted the necessity of a systems biology approach in addressing plant stress biology.
  •  
38.
  • Yan, Xue-Mei, et al. (författare)
  • Unraveling the evolutionary dynamics of the TPS gene family in land plants
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Terpenes and terpenoids are key natural compounds for plant defense, development, and composition of plant oil. The synthesis and accumulation of a myriad of volatile terpenoid compounds in these plants may dramatically alter the quality and flavor of the oils, which provide great commercial utilization value for oil-producing plants. Terpene synthases (TPSs) are important enzymes responsible for terpenic diversity. Investigating the differentiation of the TPS gene family could provide valuable theoretical support for the genetic improvement of oil-producing plants. While the origin and function of TPS genes have been extensively studied, the exact origin of the initial gene fusion event - it occurred in plants or microbes - remains uncertain. Furthermore, a comprehensive exploration of the TPS gene differentiation is still pending. Here, phylogenetic analysis revealed that the fusion of the TPS gene likely occurred in the ancestor of land plants, following the acquisition of individual C- and N- terminal domains. Potential mutual transfer of TPS genes was observed among microbes and plants. Gene synteny analysis disclosed a differential divergence pattern between TPS-c and TPS-e/f subfamilies involved in primary metabolism and those (TPS-a/b/d/g/h subfamilies) crucial for secondary metabolites. Biosynthetic gene clusters (BGCs) analysis suggested a correlation between lineage divergence and potential natural selection in structuring terpene diversities. This study provides fresh perspectives on the origin and evolution of the TPS gene family.
  •  
39.
  • Yang, Fu-Sheng, et al. (författare)
  • Chromosome-level genome assembly of a parent species of widely cultivated azaleas
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea. Azaleas are one of the most diverse ornamental plants and have cultural and economic importance. Here, the authors report a chromosome-scale genome assembly for the primary ancestor of the azalea cultivar Rhododendro simsi and identify transcription factors that may function in flower coloration at different stages.
  •  
40.
  •  
41.
  • Zhao, Shi-Wei, et al. (författare)
  • Haplotype-resolved genome assembly of Coriaria nepalensis a non-legume nitrogen-fixing shrub
  • 2023
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coriaria nepalensis Wall. (Coriariaceae) is a nitrogen-fixing shrub which forms root nodules with the actinomycete Frankia. Oils and extracts of C. nepalensis have been reported to be bacteriostatic and insecticidal, and C. nepalensis bark provides a valuable tannin resource. Here, by combining PacBio HiFi sequencing and Hi-C scaffolding techniques, we generated a haplotype-resolved chromosome-scale genome assembly for C. nepalensis. This genome assembly is approximately 620 Mb in size with a contig N50 of 11 Mb, with 99.9% of the total assembled sequences anchored to 40 pseudochromosomes. We predicted 60,862 protein-coding genes of which 99.5% were annotated from databases. We further identified 939 tRNAs, 7,297 rRNAs, and 982 ncRNAs. The chromosome-scale genome of C. nepalensis is expected to be a significant resource for understanding the genetic basis of root nodulation with Frankia, toxicity, and tannin biosynthesis.
  •  
42.
  • Zhao, Wei, et al. (författare)
  • Effects of landscapes and range expansion on population structure and local adaptation
  • 2020
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 228:1, s. 330-343
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the origin and distribution of genetic diversity across landscapes is critical for predicting the future of organisms in changing climates. This study investigated how adaptive and demographic forces have shaped diversity and population structure in Pinus densata, a keystone species on Qinghai-Tibetan Plateau (QTP). We examined the distribution of genomic diversity across the range of P. densata using exome capture sequencing. We applied spatially explicit tests to dissect the impacts of allele surfing, geographic isolation and environmental gradients on population differentiation and forecasted how this genetic legacy may limit the persistence of P. densata in future climates. We found that allele surfing from range expansion could explain the distribution of 39% of the c. 48 000 genotyped single nucleotide polymorphisms (SNPs). Uncorrected, these allele frequency clines severely confounded inferences of selection. After controlling for demographic processes, isolation-by-environment explained 9.2-19.5% of the genetic structure, with c. 4.0% of loci being affected by selection. Allele surfing and genotype-environment associations resulted in genomic mismatch under projected climate scenarios. We illustrate that significant local adaptation, when coupled with reduced diversity as a result of demographic history, constrains potential evolutionary response to climate change. The strong signal of genomic vulnerability in P. densata may be representative for other QTP endemics.
  •  
43.
  • Zhao, Wei, et al. (författare)
  • Weak Crossability Barrier but Strong Juvenile Selection Supports Ecological Speciation of the Hybrid Pine Pinus Densata on the Tibetan Plateau
  • 2014
  • Ingår i: Evolution. - : John Wiley & Sons. - 0014-3820 .- 1558-5646. ; 68:11, s. 3120-3133
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P. yunnanensis. We performed interspecific crosses among the three species to assess their crossability. We then conducted reciprocal transplantation experiments to evaluate their fitness differentiation, and to examine how natural populations representing different directions of introgression differ in adaptation. The crossing experiments revealed weak genetic barriers among the species. The transplantation trials showed manifest evidence of local adaptation as the three species all performed best in their native habitats. Pinus densata populations from the western edge of its distribution have evolved a strong local adaptation to the specific habitat in that range; populations representing different directions of introgressants with the two parental species all showed fitness disadvantages in this P. densata habitat. These observations illustrate that premating isolation through selection against immigrants from other habitat types or postzygotic isolation through selection against backcrosses between the three species is strong. Thus, ecological selection in combination with endogenous components and geographic isolation has likely played a significant role in the speciation of P. densata.
  •  
44.
  • Zou, Jiazhi, et al. (författare)
  • Porphyrins containing a tetraphenylethylene-substituted phenothiazine donor for fabricating efficient dye sensitized solar cells with high photovoltages
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 10:3, s. 1320-1328
  • Tidskriftsartikel (refereegranskat)abstract
    • With the aim to enhance the photovoltages and efficiencies of dye sensitized solar cells (DSSCs) based on porphyrin dyes, a dialkoxy-substituted highly twisted tetraphenylethylene (TPE) moiety has been introduced into the donor unit of a porphyrin dye to suppress dye aggregation and charge recombination. Thus, based on our previously reported porphyrin dye XW43, a dialkoxy-TPE moiety has been introduced into the phenothiazine donor to afford XW71. Compared with the diethyleneglycol substituent in XW43, the bulkier dialkoxy-TPE unit in XW71 is more beneficial for suppressing charge recombination. The alkoxy chains on the TPE moieties in XW71 are extended outward from the molecule and folded toward the porphyrin macrocycle, respectively, favorable for suppressing dye aggregation and charge recombination. As a result, the V-OC was dramatically improved from 0.750 V (XW43) to 0.765 V (XW71). On this basis, the substituents surrounding the porphyrin macrocycle have been optimized to further improve the V-OC and the efficiencies. Thus, XW72 and XW73 have been synthesized by replacing the dodecyloxy moieties on the meso-phenyl substituents of XW71 with two diethyleneglycol (DEG) chains and double straps, respectively. As a result, XW72 and XW73 exhibit a gradually improved V-OC of 0.772 V and 0.777 V, respectively, and a high power conversion efficiency (PCE) of 11.0% has been achieved for XW73. Upon coadsorption and cosensitization, the efficiency can be further enhanced to an outstanding value of 12.3% for the XW73 + CDCA + XC3 system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-44 av 44
Typ av publikation
tidskriftsartikel (42)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (44)
Författare/redaktör
Zhao, Wei (28)
Wang, Xiao-Ru (26)
Liu, Hui (13)
Li, Yue (6)
Xu, Jie (3)
Wang, Mei (2)
visa fler...
Wang, Xin (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Batra, Jyotsna (2)
Roobol, Monique J (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Zhang, Wei (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Wang, Ying (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Chen, Wei (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Uversky, Vladimir N. (2)
Harris, James (2)
Liu, Hao (2)
Zhang, Hong (2)
Zhang, Li (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Przyklenk, Karin (2)
Gao, Jie (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Okamoto, Koji (2)
visa färre...
Lärosäte
Umeå universitet (37)
Lunds universitet (4)
Karolinska Institutet (4)
Göteborgs universitet (3)
Linköpings universitet (3)
Uppsala universitet (2)
visa fler...
Stockholms universitet (2)
Chalmers tekniska högskola (2)
Sveriges Lantbruksuniversitet (2)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (38)
Medicin och hälsovetenskap (7)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy