SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marchezi Paulo E.) "

Sökning: WFRF:(Marchezi Paulo E.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Szostak, Rodrigo, et al. (författare)
  • In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells : Insights from Lab-Sized Devices to Upscaling Processes
  • 2023
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 123:6, s. 3160-3236
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance and stabi l i t y of metal halide perovskite sola r cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel t h e mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/ degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stabi l i t y required for scale-up and consequent commercial deployment of these cells.
  •  
2.
  • Tutundzic, Merve, et al. (författare)
  • Toward Efficient and Fully Scalable Sputtered NiOx-Based Inverted Perovskite Solar Modules via Co-Ordinated Modification Strategies
  • 2023
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sputtered nickel oxide (NiOx) has become one of the most promising inorganic hole transport layers for p–i–n perovskite solar cells (PSCs) due to its appealing features such as its robust nature, low material cost, and easy integration to tandem structures and large-area applications. However, the main drawback with NiOx-based PSCs is typically low open-circuit voltage (VOC) due to the inferior energy-level alignment, low charge mobility, and high recombination at the interface. Herein, two types of phosphonic acid self-assembled monolayers (SAMs) deposited by blade coating as an interfacial layer to modulate the sputtered NiOx/perovskite interface properties are used. While sputtered NiOx serves as a conformally coated hole selective layer, the ultrathin SAM interlayer facilitates the hole extraction and minimizes the energy loss at the interface. Co-ordinately introduced stabilizing additive, namely octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (I-76), further improves the device performance of NiOx/SAM-based PSCs, resulting in VOC of 1.14 V and a power conversion efficiency of 21.8%. By applying these strategies for perovskite module upscaling, aperture area module efficiencies of 19.7%, 17.5%, and 15.5% for perovskite minimodules of 4, 16, and 100 cm2 are demonstrated, corresponding to active area module efficiencies of 20.4%, 18.0%, and 16.4%, respectively. 
  •  
3.
  • Zhang, Xin, et al. (författare)
  • Minimizing the Interface-Driven Losses in Inverted Perovskite Solar Cells and Modules
  • 2023
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 8:6, s. 2532-2542
  • Tidskriftsartikel (refereegranskat)abstract
    • The inverted p-i-n perovskite solar cells hold high promise for scale-up toward commercialization. However, the interfaces between the perovskite and the charge transport layers contribute to major power conversion efficiency (PCE) loss and instability. Here, we use a single material of 2-thiopheneethylammonium chloride (TEACl) to molecularly engineer both the interface between the perovskite and fullerene-C60 electron transport layer and the buried interface between the perovskite and NiOx-based hole transport layer. The dual interface modification results in optimized band alignment, suppressed nonradiative recombination, and improved interfacial contact. A PCE of 24.3% is demonstrated, with open-circuit voltage (Voc) and fill factor (FF) of 1.17 V and 84.6%, respectively. The unencapsulated device retains >97.0% of the initial performance after 1000 h of maximum power point tracking under illumination. Moreover, a PCE of 22.6% and a remarkable FF of 82.4% are obtained for a mini-module with an active area of 3.63 cm2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy