SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marchitto Thomas) "

Sökning: WFRF:(Marchitto Thomas)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marchitto, Thomas M., et al. (författare)
  • Dynamical Response of the Tropical Pacific Ocean to Solar Forcing During the Early Holocene
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 330:6009, s. 1378-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a high-resolution magnesium/calcium proxy record of Holocene sea surface temperature (SST) from off the west coast of Baja California Sur, Mexico, a region where interannual SST variability is dominated today by the influence of the El Nino-Southern Oscillation (ENSO). Temperatures were lowest during the early to middle Holocene, consistent with documented eastern equatorial Pacific cooling and numerical model simulations of orbital forcing into a La Nina-like state at that time. The early Holocene SSTs were also characterized by millennial-scale fluctuations that correlate with cosmogenic nuclide proxies of solar variability, with inferred solar minima corresponding to El Nino-like (warm) conditions, in apparent agreement with the theoretical "ocean dynamical thermostat" response of ENSO to exogenous radiative forcing.
  •  
2.
  • Pausata, Francesco S. R., et al. (författare)
  • The remote response of the South Asian Monsoon to reduced dust emissions and Sahara greening during the middle Holocene
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:3, s. 1243-1271
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies based on multiple paleoclimate archives suggested a prominent intensification of the South Asian Monsoon (SAM) during the mid-Holocene (MH, similar to 6000 years before present). The main forcing that contributed to this intensification is related to changes in the Earth's orbital parameters. Nonetheless, other key factors likely played important roles, including remote changes in vegetation cover and airborne dust emission. In particular, northern Africa also experienced much wetter conditions and a more mesic landscape than today during the MH (the so-called African Humid Period), leading to a large decrease in airborne dust globally. However, most modeling studies investigating the SAM changes during the Holocene overlooked the potential impacts of the vegetation and dust emission changes that took place over northern Africa. Here, we use a set of simulations for the MH climate, in which vegetation over the Sahara and reduced dust concentrations are considered. Our results show that SAM rainfall is strongly affected by Saharan vegetation and dust concentrations, with a large increase in particular over northwestern India and a lengthening of the monsoon season. We propose that this re- mote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
  •  
3.
  • Waelbroeck, Claire, et al. (författare)
  • Consistently dated Atlantic sediment cores over the last 40 thousand years
  • 2019
  • Ingår i: Scientific Data. - : NATURE PUBLISHING GROUP. - 2052-4463. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy