SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mariën Bertold) "

Sökning: WFRF:(Mariën Bertold)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dox, Inge, et al. (författare)
  • Wood growth phenology and its relationship with leaf phenology in deciduous forest trees of the temperate zone of Western Europe
  • 2022
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 0168-1923 .- 1873-2240. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood growth phenology of temperate deciduous trees is less studied than leaf phenology, hindering the understanding of their interaction. In order to describe the variability of wood growth and leaf phenology across locations, species and years, we performed phenological observations of both xylem formation and leaf development in three typical temperate forest areas in Western Europe (Northern Spain, Belgium and Southern Norway) for four common deciduous tree species (Fagus sylvatica L., Betula pendula Roth., Populus tremula L. and Quercus robur L.) in 2018, 2019 and 2020, with only beech and birch being studied in the final year. The earliest cambial reactivation in spring occurred at the Belgian stands while the end of cambial activity and wood growth cessation generally occurred first in Norway. Results did not show much consistency across species, sites or years and lacked general patterns, except for the end of cambial activity, which occurred generally first in birch. For all species, the site variation in phenophases (up to three months) was substantially larger than the inter-annual variability (up to six weeks). The timeline of bud-burst and cambium reactivation, as well as of foliar senescence and cessation of wood growth, were variable across species even with the same type of wood porosity. Our results suggest that wood growth and leaf phenology are less well connected than previously thought. Linear models showed that temperature is the dominant driver of wood growth phenology, but with climate zone also having an effect, especially at the start of the growing season. Drought conditions, on the other hand, have a larger effect on the timing of wood growth cessation. Our comprehensive analysis represents the first large regional assessment of wood growth phenology in common European deciduous tree species, providing not only new fundamental insights but also a unique dataset for future modelling applications.
  •  
2.
  • Jurca, Manuela, et al. (författare)
  • Biotechnological adaptation of seasonal growth using high yielding Populus gibberellin overproducing trees
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Tree growth is central to terrestrial ecology and the forestry industry. The overproduction by biotechnological means of hormones such as gibberellins (GAs) has been used as a powerful toolto greatly increase tree yield and wood properties. However, for trees in temperate and boreal regions, overexpressing GAs prevents the ability to induce vegetative dormancy, and results in reduced yield and tree loss over time. Since Populus trees are using an internal 24-h (circadian) clock to synchronize their metabolism and growth with local, predictable changes in the external environment, we focused on circadian control of GA metabolism, to showcase the principle of seasonal growth adaptation. To obtain both maintained growth benefits and a seasonally timed growth, we set out to modulate levels of bioactive GAs by using the endogenous Populus tremula× P. tremuloides CycD3 promoter. We show that both high yield and biotechnical seasonal growth adaptation is obtained with this promoter, which is coordinated by the clock protein LATE ELONGATED HYPOCOTYL 2 (PttLHY2). This work paves the way for future precision breeding of trees with local adaptation and increased yield. 
  •  
3.
  • Van Sundert, Kevin, et al. (författare)
  • When things get MESI : The Manipulation Experiments Synthesis Initiative—A coordinated effort to synthesize terrestrial global change experiments
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:7, s. 1922-1938
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2, warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.
  •  
4.
  • Zuccarini, Paolo, et al. (författare)
  • Drivers and dynamics of foliar senescence in temperate deciduous forest trees at their southern limit of distribution in Europe
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier. - 0168-1923 .- 1873-2240. ; 342
  • Tidskriftsartikel (refereegranskat)abstract
    • Research on autumn phenology is very important for understanding and simulating the future growth of temperate deciduous forests. This is especially needed at the southern edge of the temperate zone, where climate change impacts are particularly intense. We studied foliar senescence timing for mature stands of Fagus sylvatica L., Populus tremula L., Betula pendula Roth, Quercus petraea (Matt.) Liebl. and Quercus robur L. at the southern edge of European temperate forests. First, we analysed long-term series (1997–2019) of senescence timing in southern France. Then, we compared a more detailed four-year dataset (2017–2020) of senescence dynamics and its correlations to meteorological conditions for stands in northern Spain and Belgium, with the latter area representing the core distribution of the species. In contrast to other temperate regions, no significant delaying trends in the timing of autumn phenology were detected in the long-term in southern temperate forests, which were characterized by high inter-site variability. In the short-term (4 years), species-specific correlations with meteorological conditions were found, with, for example, the senescence of F. sylvatica being affected by temperature while the senescence of Q. petraea was affected by both temperature and precipitation. Autumn dynamics differed between the core and southern areas of distribution of the species in the study period. In particular, while late season conditions affected senescence timing in the southern populations, the senescence dynamics of the core populations was mostly influenced by the legacy of spring – early summer conditions and, overall, more affected by precipitation than southern populations. Our data fill important knowledge gaps on the functioning of temperate deciduous forests at the southern limit of distribution in Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy