SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marie JP) "

Sökning: WFRF:(Marie JP)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  • Alcorn, J, et al. (författare)
  • Basic instrumentation for Hall A at Jefferson Lab
  • 2004
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 522:3, s. 294-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro-and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2 x 10(-4). A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10(38) CM-2 s(-1). The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium. (C) 2003 Elsevier B.V. All rights reserved.
  •  
5.
  •  
6.
  •  
7.
  • Chalfouh, C, et al. (författare)
  • The Regenerative Effect of Trans-spinal Magnetic Stimulation After Spinal Cord Injury: Mechanisms and Pathways Underlying the Effect
  • 2020
  • Ingår i: Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. - : Springer Science and Business Media LLC. - 1878-7479. ; 17:4, s. 2069-2088
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinal cord injury (SCI) leads to a loss of sensitive and motor functions. Currently, there is no therapeutic intervention offering a complete recovery. Here, we report that repetitive trans-spinal magnetic stimulation (rTSMS) can be a noninvasive SCI treatment that enhances tissue repair and functional recovery. Several techniques including immunohistochemical, behavioral, cells cultures, and proteomics have been performed. Moreover, different lesion paradigms, such as acute and chronic phase following SCI in wild-type and transgenic animals at different ages (juvenile, adult, and aged), have been used. We demonstrate that rTSMS modulates the lesion scar by decreasing fibrosis and inflammation and increases proliferation of spinal cord stem cells. Our results demonstrate also that rTSMS decreases demyelination, which contributes to axonal regrowth, neuronal survival, and locomotor recovery after SCI. This research provides evidence that rTSMS induces therapeutic effects in a preclinical rodent model and suggests possible translation to clinical application in humans.
  •  
8.
  • de las Heras, Alejandro Muñoz, et al. (författare)
  • Anaerobic poly-3-d-hydroxybutyrate production from xylose in recombinant Saccharomyces cerevisiae using a NADH-dependent acetoacetyl-CoA reductase
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Poly-3-d-hydroxybutyrate (PHB) that is a promising precursor for bioplastic with similar physical properties as polypropylene, is naturally produced by several bacterial species. The bacterial pathway is comprised of the three enzymes β-ketothiolase, acetoacetyl-CoA reductase (AAR) and PHB synthase, which all together convert acetyl-CoA into PHB. Heterologous expression of the pathway genes from Cupriavidus necator has enabled PHB production in the yeast Saccharomyces cerevisiae from glucose as well as from xylose, after introduction of the fungal xylose utilization pathway from Scheffersomyces stipitis including xylose reductase (XR) and xylitol dehydrogenase (XDH). However PHB titers are still low. Results: In this study the acetoacetyl-CoA reductase gene from C. necator (CnAAR), a NADPH-dependent enzyme, was replaced by the NADH-dependent AAR gene from Allochromatium vinosum (AvAAR) in recombinant xylose-utilizing S. cerevisiae and PHB production was compared. A. vinosum AAR was found to be active in S. cerevisiae and able to use both NADH and NADPH as cofactors. This resulted in improved PHB titers in S. cerevisiae when xylose was used as sole carbon source (5-fold in aerobic conditions and 8.4-fold under oxygen limited conditions) and PHB yields (4-fold in aerobic conditions and up to 5.6-fold under oxygen limited conditions). Moreover, the best strain was able to accumulate up to 14% of PHB per cell dry weight under fully anaerobic conditions. Conclusions: This study reports a novel approach for boosting PHB accumulation in S. cerevisiae by replacement of the commonly used AAR from C. necator with the NADH-dependent alternative from A. vinosum. Additionally, to the best of our knowledge, it is the first demonstration of anaerobic PHB synthesis from xylose.
  •  
9.
  •  
10.
  •  
11.
  • Gayou, O, et al. (författare)
  • Measurement of G(Ep)/G(Mp) in (e)over-right-arrowp -> e(p)over-right-arrow to Q(2)=5.6 GeV2
  • 2002
  • Ingår i: Physical Review Letters. - 1079-7114. ; 88:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The ratio of the electric and magnetic form factors of the proton G(Ep)/G(Mp), which is an image of its charge and magnetization distributions, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic (e) over right arrowp --> e (p) over right arrow reaction. The new data presented span the range 3.5 < Q(2) < 5.6 GeV2 and are well described by a linear Q(2) fit. Also, the ratio rootQ(2) F-2p/F-1p reaches a constant value above Q(2) = 2 GeV2.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Nunes, Diogo Jp, et al. (författare)
  • Effect of nitrogen availability on the poly-3-d-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae
  • 2017
  • Ingår i: AMB Express. - : Springer Science and Business Media LLC. - 2191-0855. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-d-hydroxybutyrate (or PHB) is a polyester which can be used in the production of biodegradable plastics from renewable resources. It is naturally produced by several bacteria as a response to nutrient starvation in the excess of a carbon source. The yeast Saccharomyces cerevisiae could be an alternative production host as it offers good inhibitor tolerance towards weak acids and phenolic compounds and does not depolymerize the produced PHB. As nitrogen limitation is known to boost the accumulation of PHB in bacteria, the present study aimed at investigating the effect of nitrogen availability on PHB accumulation in two recombinant S. cerevisiae strains harboring different xylose consuming and PHB producing pathways: TMB4443 expressing an NADPH-dependent acetoacetyl-CoA reductase and a wild-type S. stipitis XR with preferential use of NADPH and TMB4425 which expresses an NADH-dependent acetoacetyl-CoA reductase and a mutated XR with a balanced affinity for NADPH/NADH. TMB4443 accumulated most PHB under aerobic conditions and with glucose as sole carbon source, whereas the highest PHB concentrations were obtained with TMB4425 under anaerobic conditions and xylose as carbon source. In both cases, the highest PHB contents were obtained with high availability of nitrogen. The major impact of nitrogen availability was observed in TMB4425, where a 2.7-fold increase in PHB content was obtained. In contrast to what was observed in natural PHB-producing bacteria, nitrogen deficiency did not improve PHB accumulation in S. cerevisiae. Instead the excess available carbon from xylose was shunted into glycogen, indicating a significant gluconeogenic activity on xylose.
  •  
16.
  •  
17.
  •  
18.
  • Sandström, Anders, et al. (författare)
  • Engineering of Saccharomyces cerevisiae for the production of poly-3-d-hydroxybutyrate from xylose.
  • 2015
  • Ingår i: AMB Express. - : Springer Science and Business Media LLC. - 2191-0855. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-d-hydroxybutyrate (PHB) is a promising biopolymer naturally produced by several bacterial species. In the present study, the robust baker's yeast Saccharomyces cerevisiae was engineered to produce PHB from xylose, the main pentose found in lignocellulosic biomass. The PHB pathway genes from the well-characterized PHB producer Cupriavidus necator were introduced in recombinant S. cerevisiae strains already capable of pentose utilization by introduction of the fungal genes for xylose utilization from the yeast Scheffersomyces stipitis. PHB production from xylose was successfully demonstrated in shake-flasks experiments, with PHB yield of 1.17 ± 0.18 mg PHB g(-1) xylose. Under well-controlled fully aerobic conditions, a titer of 101.7 mg PHB L(-1) was reached within 48 hours, with a PHB yield of 1.99 ± 0.15 mg PHB g(-1) xylose, thereby demonstrating the potential of this host for PHB production from lignocellulose.
  •  
19.
  • Sandström, Anders, et al. (författare)
  • Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?
  • 2014
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 98:17, s. 7299-7318
  • Forskningsöversikt (refereegranskat)abstract
    • Carboxylic acids are important bulk chemicals that can be used as building blocks for the production of polymers, as acidulants, preservatives and flavour compound or as precursors for the synthesis of pharmaceuticals. Today, their production mainly takes place through catalytic processing of petroleum-based precursors. An appealing alternative would be to produce these compounds from renewable resources, using tailor-made microorganisms. Saccharomyces cerevisiae has already demonstrated its value for bioethanol production from renewable resources. In this review, we discuss Saccharomyces cerevisiae engineering potential, current strategies for carboxylic acid production as well as the specific challenges linked to the use of lignocellulosic biomass as carbon source.
  •  
20.
  •  
21.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy