SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Markenroth bloch Karin) "

Sökning: WFRF:(Markenroth bloch Karin)

  • Resultat 1-50 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axelsson, L., et al. (författare)
  • Study of the unbound nucleus 11N by elastic resonance scattering
  • 1996
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813 .- 2469-9985 .- 2469-9993. ; 54:4, s. 1511-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonances in the unbound nucleus 11N have been studied, using the resonance scattering reaction 10C+p. The data give evidence for three states above the 10C+p threshold with energies 1.30, 2.04, and 3.72 MeV. These states can be interpreted, in a potential-model analysis, as the ground state and the first two excited states with spin-parity 1 / 2+, 1 / 2-, and 5 / 2+ arising from the shell-model orbitals 1s1 / 2, 0p1 / 2, and 0d5 / 2. A narrow state superposed on a broad structure found at higher energy could be interpreted as the mirror state of the 3 / 2- in 11Be shifted down in energy. This shift would suggest a large radius of the potential.
  •  
2.
  • Bergmann, U.C., et al. (författare)
  • On the b-decay of 9C
  • 2001
  • Ingår i: Nuclear Physics A. ; 692:3-4, s. 427-450
  • Tidskriftsartikel (refereegranskat)abstract
    • In β-decay experiments on 9C at CERN/ISOLDE the β-strength was determined to the ground state, the 12.2 MeV excited state and the Isobaric Analog State (IAS) at 14.655 MeV in 9B. A large β-strength asymmetry is deduced for the mirror transitions of 9C and 9Li to states around 12 MeV excitation energy. A satisfactory description of the three-body decay from a narrow energy region around the 12.2 MeV resonance is obtained within a sequential model involving the ground and first-excited states of 5Li and 8Be. From the study of angular correlations the spin of the 12.2 MeV state is determined as 5/2−. For the first time the population of the IAS is observed in β-decay and new information on the decay of this state is obtained. The advantages of a closely packed, highly segmented detector setup are demonstrated.
  •  
3.
  • Bergvall, Erik, et al. (författare)
  • Regularization of phase contrast magnetic resonance images using optical flow and smoothness constraints
  • 2005
  • Ingår i: Computers in Cardiology. - 0276-6574. ; 32, s. 33-36
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a post processing strategy for myocardial velocity fields obtained by phase contrast magnetic resonance imaging. Such data can be used to track cardiac motion and to calculate strain. The method combines data regularization with optical flow estimation to overcome the partial volume effect in the image acquisition. Validation is performed both in vitro and in vivo and it is shown that the method improves the accuracy of cardiac motion tracking.
  •  
4.
  • Bergvall, Erik, et al. (författare)
  • Spline-based cardiac motion tracking using velocity-encoded magnetic resonance imaging.
  • 2008
  • Ingår i: IEEE Transactions on Medical Imaging. - 1558-254X. ; 27:8, s. 1045-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper deals with the problem of tracking cardiac motion and deformation using velocity-encoded magnetic resonance imaging. We expand upon an earlier described method and fit a spatiotemporal motion model to measured velocity data. We investigate several different spatial elements both qualitatively and quantitatively using phantom measurements and data from human subjects. In addition, we also use optical flow estimation by the Horn-Schunk method as complementary data in regions where the velocity measurements are noisy. Our results show that it is possible to obtain good motion tracking accuracy in phantoms with relatively few spatial elements, if the type of element is properly chosen. The use of optical flow can correct some measurement artifacts but may give an underestimation of the magnitude of the deformation. In human subjects the different spatial elements perform quantitatively in a similar way but qualitative differences exists, as shown by a semiquantitative visual scoring of the different methods.
  •  
5.
  • Björkman-Burtscher, Isabella M., et al. (författare)
  • Detailed anatomy at 7T
  • 2017
  • Ingår i: Neuroimaging : Anatomy Meets Function - Anatomy Meets Function. - Cham : Springer International Publishing. - 9783319574264 - 9783319574271 ; , s. 69-80
  • Bokkapitel (refereegranskat)
  •  
6.
  • Björkman-Burtscher, Isabella M., et al. (författare)
  • Detailed anatomy at 7T
  • 2017
  • Ingår i: Neuroimaging : Anatomy Meets Function - Anatomy Meets Function. - Cham : Springer International Publishing. - 9783319574264 - 9783319574271 ; , s. 145-151
  • Bokkapitel (refereegranskat)abstract
    • Selected high resolution axial images obtained from a 7T MRI scanner have been labeled to provide detailed information about the subtle structures found in the cerebellum and brainstem.
  •  
7.
  • Bock, Jelena, et al. (författare)
  • Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating
  • 2018
  • Ingår i: Acta Radiologica. - : SAGE Publications. - 0284-1851 .- 1600-0455.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: 4D-flow magnetic resonance imaging (MRI) is increasingly used. Purpose: To validate 4D-flow sequences in phantom and in vivo, comparing volume flow and kinetic energy (KE) head-to-head, with and without respiratory gating. Material and Methods: Achieva dStream (Philips Healthcare) and MAGNETOM Aera (Siemens Healthcare) 1.5-T scanners were used. Phantom validation measured pulsatile, three-dimensional flow with 4D-flow MRI and laser particle imaging velocimetry (PIV) as reference standard. Ten healthy participants underwent three cardiac MRI examinations each, consisting of cine-imaging, 2D-flow (aorta, pulmonary artery), and 2 × 2 accelerated 4D-flow with (Resp+) and without (Resp−) respiratory gating. Examinations were acquired consecutively on both scanners and one examination repeated within two weeks. Volume flow in the great vessels was compared between 2D- and 4D-flow. KE were calculated for all time phases and voxels in the left ventricle. Results: Phantom results showed high accuracy and precision for both scanners. In vivo, higher accuracy and precision (P < 0.001) was found for volume flow for the Aera prototype with Resp+ (–3.7 ± 10.4 mL, r = 0.89) compared to the Achieva product sequence (–17.8 ± 18.6 mL, r = 0.56). 4D-flow Resp− on Aera had somewhat larger bias (–9.3 ± 9.6 mL, r = 0.90) compared to Resp+ (P = 0.005). KE measurements showed larger differences between scanners on the same day compared to the same scanner at different days. Conclusion: Sequence-specific in vivo validation of 4D-flow is needed before clinical use. 4D-flow with the Aera prototype sequence with a clinically acceptable acquisition time (<10 min) showed acceptable bias in healthy controls to be considered for clinical use. Intra-individual KE comparisons should use the same sequence.
  •  
8.
  • Carlsson, Marcus, et al. (författare)
  • Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure
  • 2012
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cardiovascular Magnetic Resonance (CMR) enables non-invasive quantification of cardiac output (CO) and thereby cardiac index (CI, CO indexed to body surface area). The aim of this study was to establish if CI decreases with age and compare the values to CI for athletes and for patients with congestive heart failure (CHF). Methods: CI was measured in 144 healthy volunteers (39 +/- 16 years, range 21-81 years, 68 females), in 60 athletes (29 +/- 6 years, 30 females) and in 157 CHF patients with ejection fraction (EF) below 40% (60 +/- 13 years, 33 females). CI was calculated using aortic flow by velocity-encoded CMR and is presented as mean +/- SD. Flow was validated in vitro using a flow phantom and in 25 subjects with aorta and pulmonary flow measurements. Results: There was a slight decrease of CI with age in healthy subjects (8 ml/min/m(2) per year, r(2) = 0.07, p = 0.001). CI in males (3.2 +/- 0.5 l/min/m(2)) and females (3.1 +/- 0.4 l/min/m(2)) did not differ (p = 0.64). The mean +/- SD of CI in healthy subjects in the age range of 20-29 was 3.3 +/- 0.4 l/min/m(2), in 30-39 years 3.3 +/- 0.5 l/min/m(2), in 40-49 years 3.1 +/- 0.5 l/min/m(2), 50-59 years 3.0 +/- 0.4 l/min/m(2) and >60 years 3.0 +/- 0.4 l/min/m(2). There was no difference in CI between athletes and age-controlled healthy subjects but HR was lower and indexed SV higher in athletes. CI in CHF patients (2.3 +/- 0.6 l/min/m(2)) was lower compared to the healthy population (p < 0.001). There was a weak correlation between CI and EF in CHF patients (r(2) = 0.07, p < 0.001) but CI did not differ between patients with NYHA-classes I-II compared to III-IV (n = 97, p = 0.16) or patients with or without hospitalization in the previous year (n = 100, p = 0.72). In vitro phantom validation showed low bias (-0.8 +/- 19.8 ml/s) and in vivo validation in 25 subjects also showed low bias (0.26 +/- 0.61 l/min, QP/QS 1.04 +/- 0.09) between pulmonary and aortic flow. Conclusions: CI decreases in healthy subjects with age but does not differ between males and females. We found no difference in CI between athletes and healthy subjects at rest but CI was lower in patients with congestive heart failure. The presented values can be used as reference values for flow velocity mapping CMR.
  •  
9.
  • Carlsson, Marcus, et al. (författare)
  • Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T
  • 2011
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 13:55
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Three-dimensional time-resolved (4D) phase-contrast (PC) CMR can visualize and quantify cardiovascular flow but is hampered by long acquisition times. Acceleration with SENSE or k-t BLAST are two possibilities but results on validation are lacking, especially at 3 T. The aim of this study was therefore to validate quantitative in vivo cardiac 4D-acquisitions accelerated with parallel imaging and k-t BLAST at 1.5 T and 3 T with 2D-flow as the reference and to investigate if field strengths and type of acceleration have major effects on intracardiac flow visualization. Methods: The local ethical committee approved the study. 13 healthy volunteers were scanned at both 1.5 T and 3 T in random order with 2D-flow of the aorta and main pulmonary artery and two 4D-flow sequences of the heart accelerated with SENSE and k-t BLAST respectively. 2D-image planes were reconstructed at the aortic and pulmonary outflow. Flow curves were calculated and peak flows and stroke volumes (SV) compared to the results from 2D-flow acquisitions. Intra-cardiac flow was visualized using particle tracing and image quality based on the flow patterns of the particles was graded using a four-point scale. Results: Good accuracy of SV quantification was found using 3 T 4D-SENSE (r(2) = 0.86, -0.7 +/- 7.6%) and although a larger bias was found on 1.5 T (r(2) = 0.71, -3.6 +/- 14.8%), the difference was not significant (p = 0.46). Accuracy of 4D k-t BLAST for SV was lower (p < 0.01) on 1.5 T (r(2) = 0.65, -15.6 +/- 13.7%) compared to 3 T (r(2) = 0.64, -4.6 +/- 10.0%). Peak flow was lower with 4D-SENSE at both 3 T and 1.5 T compared to 2D-flow (p < 0.01) and even lower with 4D k-t BLAST at both scanners (p < 0.01). Intracardiac flow visualization did not differ between 1.5 T and 3 T (p = 0.09) or between 4D-SENSE or 4D k-t BLAST (p = 0.85). Conclusions: The present study showed that quantitative 4D flow accelerated with SENSE has good accuracy at 3 T and compares favourably to 1.5 T. 4D flow accelerated with k-t BLAST underestimate flow velocities and thereby yield too high bias for intra-cardiac quantitative in vivo use at the present time. For intra-cardiac 4D-flow visualization, however, 1.5 T and 3 T as well as SENSE or k-t BLAST can be used with similar quality.
  •  
10.
  • Carlsson, Marcus, et al. (författare)
  • Submaximal adenosine-induced coronary hyperaemia with 12 h caffeine abstinence: implications for clinical adenosine perfusion imaging tests.
  • 2015
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961 .- 1475-097X. ; 35:1, s. 49-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine is widely used as a vasodilator agent in myocardial perfusion imaging. Caffeine inhibits the effect, but the time of caffeine abstinence needed is under discussion and varies from 12 to 24 h. Therefore, our aim was to examine whether the time of caffeine abstinence affects the hyperaemic response using quantification of coronary sinus flow (CS F) with cardiac magnetic resonance (CMR) during adenosine infusion.
  •  
11.
  •  
12.
  • Gard, Anna, et al. (författare)
  • Post-Concussive Vestibular Dysfunction Is Related to Injury to the Inferior Vestibular Nerve
  • 2022
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 39:11-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Symptoms of vestibular dysfunction such as dizziness and vertigo are common after sports-related concussions (SRC) and associated with a worse outcome and a prolonged recovery. Vestibular dysfunction after SRC can be because of an impairment of the peripheral or central neural parts of the vestibular system. The aim of the present study was to establish the cause of vestibular impairment in athletes with SRC who have persisting post-concussive symptoms (PPCS). We recruited 42 participants-21 athletes with previous SRCs and PPCS >= 6 months and 21 healthy athletic age- and sex-matched controls-who underwent symptom rating, a detailed test battery of vestibular function and 7T magnetic resonance imaging with diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) of cerebellar white matter tracts, and T1-weighted imaging for cerebellar volumetrics. Vestibular dysfunction was observed in 13 SRC athletes and three controls (p = 0.001). Athletes with vestibular dysfunction reported more pronounced symptoms on the Dizziness Handicap Inventory (DHI; p < 0.001) and the Hospital Anxiety and Depression Scale (HADS; p < 0.001). No significant differences in DTI metrics were found, while in DKI two metrics were observed in the superior and/or inferior cerebellar tracts. Cerebellar gray and white matter volumes were similar in athletes with SRC and controls. Compared with controls, pathological video head impulse test results (vHIT; p < 0.001) and cervical vestibular evoked myogenic potentials (cVEMP; p = 0.002) were observed in athletes with SRC, indicating peripheral vestibular dysfunction and specifically suggesting injury to the inferior vestibular nerve. In athletes with persisting symptoms after SRC, vestibular dysfunction is associated with injury to the inferior vestibular nerve.
  •  
13.
  • Gard, Anna, et al. (författare)
  • Widespread White Matter Abnormalities in Concussed Athletes Detected by 7T Diffusion Magnetic Resonance Imaging
  • 2024
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc.. - 0897-7151 .- 1557-9042.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. Twenty-two athletes with PPCS and 22 controls were included. Concussed athletes performed below norms and significantly lower than controls on all but one of the psychometric neuropsychology tests. Supratentorial white and gray matter, as well as hippocampal volumes did not differ between concussed athletes and controls. However, of the 72 examined white matter tracts, 16% of DTI and 35% of DKI metrics (in total 28%) were significantly different between concussed athletes and controls. DKI fractional anisotropy and axial kurtosis were increased, and DKI radial diffusivity and radial kurtosis decreased in concussed athletes when compared with controls. CSF neurofilament light (NfL; an axonal injury marker), although not glial fibrillary acidic protein, correlated with several diffusion metrics. In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.
  •  
14.
  • Gatehouse, Peter D., et al. (författare)
  • A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors
  • 2012
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 14:72
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the region of interest and subtract it from the clinical study. Such techniques assume that the background offset is stable over the time of a patient scan, or even longer if the phantom scans are acquired later, or derived from pre-stored background correction images. There is no published evidence regarding temporal stability of the background offset. Methods: This study assessed the temporal stability of the background offset on 3 different manufacturers' scanners over 8 weeks, using a retrospectively-gated phase-contrast cine acquisition with fixed parameters and at a fixed location, repeated 5 times in rapid succession each week. A significant offset was defined as 0.6 cm/s within 50 mm of isocenter, based upon an accuracy of 10% in a typical cardiac shunt measurement. Results: Over the 5 repeated cine acquisitions, temporal drift in the baseline offset was insignificant on two machines (0.3 cm/s, 0.2 cm/s), and marginally insignificant on the third machine (0.5 cm/s) due to an apparent heating effect. Over a longer timescale of 8 weeks, insignificant drift (0.4 cm/s) occurred on one, with larger drifts (0.9 cm/s, 0.6 cm/s) on the other machines. Conclusions: During a typical patient study, background drift was insignificant. Extended high gradient power scanning with work requires care to avoid drift on some machines. Over the longer term of 8 weeks, significant drift is likely, preventing accurate correction by delayed phantom corrections or derivation from pre-stored background offset data.
  •  
15.
  • Grande, Xenia, et al. (författare)
  • Ultra-high field imaging of the human medial temporal lobe
  • 2023. - 1
  • Ingår i: Ultra-High Field Neuro MRI. - 9780323999533 - 9780323998987 ; 10, s. 259-259
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Ultra-high field (UHF) imaging provides substantial benefits for the structural and functional investigation of the human medial temporal lobe. The medial temporal lobe is a complex system of many subregions that is critically involved in many cognitive functions and vulnerable to neurodegenerative processes. Here, we first lay out the benefits of UHF imaging for visualizing anatomical features with high resolution to delineate subregions. We provide examples of structural imaging studies that critically rely on UHF imaging. Second, we point out how UHF functional imaging advances the investigation of the functional organization of the medial temporal lobe and its involvement in cognitive processes. Examples are given for how UHF imaging is used here to reveal critical mechanisms and information flow on the subregional and layer-specific levels. Finally, we highlight motion and signal dropout as challenges of structural and functional UHF and conclude with perspectives for UHF imaging in the future.
  •  
16.
  • Götestrand, Simon, et al. (författare)
  • Visualization of wrist anatomy - a comparison between 7T and 3T MRI
  • 2022
  • Ingår i: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 32:2, s. 1362-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Injuries to the wrist are, due to its small size and complex anatomical structures, difficult to assess by MR, and surgical interventions such as diagnostic arthroscopy are often necessary. Therefore, improved visualization using non-invasive methods could be of clinical value. As a first step of improvement, the purpose of this study was to evaluate visualization of anatomical structures at 7T compared with 3T MR. Methods Eighteen healthy volunteers (three males and three females from each age decade between 20 and 49 years) were examined with 7T and 3T MR. Four musculoskeletal radiologists graded 2D and 3D images on a five-level grading scale for visibility of ligaments, cartilage, nerves, trabecular bone, and tendons, as well as overall image quality (i.e., edge sharpness, perceived tissue contrast, and presence of artefacts). Statistical analysis was done using a visual grading characteristics (VGC) analysis. Results Visibility of cartilage, trabecular bone, tendons, nerves, and ligaments was graded significantly higher at 7T with an area under the curve (AUC(VGC)) of 0.62-0.88 (95% confidence interval [CI] 0.50-0.97, p = < 0.0001-0.03) using either 2D or 3D imaging. Imaging with 3T was not graded as superior to 7T for any structure. Image quality was also significantly superior at 7T, except for artefacts, where no significant differences were found. Conclusions Tendons, trabecular bone, nerves, and ligaments were all significantly better visualized at 7T compared to 3T.
  •  
17.
  • Hansson, Boel, et al. (författare)
  • MR-safety: Evaluation of compliance with screening routines using a structured screening interview
  • 2022
  • Ingår i: Journal of Patient Safety and Risk Management. - : SAGE Publications. - 2516-0435 .- 2516-0443. ; 27:2, s. 76-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Magnetic resonance (MR) safety procedures are designed to allow patients, research subjects and personnel to enter the MR-scanner room under controlled conditions and without the risk to be harmed during the examination. Ferromagnetic objects in the MR-environment or inside the human body represent the main safety risks potentially leading to human injuries. Screening for MR-safety risks with dedicated procedures is therefore mandatory. As human errors during the screening procedure might align and lead to an incident compliance is essential. Purpose To evaluate compliance with a documented structured MR-safety screening process. Method Written and signed MR-safety screening documentation collected at a national 7T MR facility during a four-year period was evaluated for compliance of trained personnel with multi-step MR-safety routines. We analysed whether examinations were performed or why they were not performed. Data analysis further included descriptive statistics of the study population (age, gender and patient or healthy volunteer status), identification of missing documents and omitted or incorrect answers, and whether these compliance shortcomings concerned predominantly administrative or MR-safety related issues. Results Documentation of the screening process in 1819 subjects was incomplete in 19% of subjects. The most common documentation shortcoming was omitted fields. Out of 478 omitted answer-fields in 307 subjects, 36% were of administrative nature and 64% related directly to MR-safety issues. Conclusion Compliance with MR-safety screening procedures cannot be taken for granted and deficiencies to comply with screening routines were revealed. Documentation shortcomings concerned both administrative and MR-safety related issues.
  •  
18.
  • Hansson, Boel, et al. (författare)
  • Short-term effects experienced during examinations in an actively shielded 7T MR.
  • 2019
  • Ingår i: Bioelectromagnetics. - : Wiley. - 1521-186X .- 0197-8462. ; 40:4, s. 234-249
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to evaluate occurrence and strength of short-term effects experienced by study participants in an actively shielded (AS) 7 tesla (7T) magnetic resonance (MR) scanner, to compare results with earlier reports on passively shielded (PS) 7T MR scanners, and to outline possible healthcare strategies to improve patient compliance. Study participants (n=124) completed a web-based questionnaire directly after being examined in an AS 7T MR (n=154 examinations). Most frequently experienced short-term effects were dizziness (84%) and inconsistent movement (70%), especially while moving into or out of the magnet. Peripheral nerve stimulation (PNS)-twitching-was experienced in 67% of research examinations and showed a dependence between strength of twitches and recorded predicted PNS values. Of the participants, 74% experienced noise levels as acceptable and the majority experienced body and room temperature as comfortable. Of the study participants, 95% felt well-informed and felt they had had good contact with the staff before the examination. Willingness to undergo a future 7T examination was high (>90%). Our study concludes short-term effects are often experienced during examinations in an AS 7T MR, leaving room for improvement in nursing care strategies to increase patient compliance. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
  •  
19.
  • Hansson, Boel, et al. (författare)
  • Subjectively Reported Effects Experienced in an Actively Shielded 7T MRI: A Large-Scale Study.
  • 2020
  • Ingår i: Journal of magnetic resonance imaging : JMRI. - : Wiley. - 1522-2586 .- 1053-1807. ; 52:4, s. 1265-1276
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrahigh-field (UHF) MRI advances towards clinical use. Patient compliance is generally high, but few large-scale studies have investigated the effects experienced in 7T MRI systems, especially considering peripheral nerve stimulation (PNS) and caregiving.To evaluate the quantity, the intensity, and subjective experiences from short-term effects, focusing on the levels of comfort and compliance of subjects.Prospective.In all, 954 consecutive MRIs in 801 subjects for 3years.7T.After the 7T examination, a questionnaire was used to collect data.Descriptive statistics, Spearman's rank correlation, Mann-Whitney U-test, and t-test.The majority (63%) of subjects agreed that the MRI experience was comfortable and 93% would be willing to undergo future 7T MRI as a patient (5% undecided) and 82% for research purposes (12% undecided). The most common short-term effects experienced were dizziness (81%), inconsistent movement (68%), PNS (63%), headache (40%), nausea (32%), metallic taste (12%), and light flashes (8%). Of the subjects who reported having PNS (n = 603), 44% experienced PNS as "not uncomfortable at all," 45% as "little or very little uncomfortable," and 11% as "moderate to very much uncomfortable." Scanner room temperature was experienced more comfortable before (78%) than during (58%) examinations, and the noise level was acceptable by 90% of subjects. Anxiety before the examination was reported by 43%. Patients differed from healthy volunteers regarding an experience of headache, metallic taste, dizziness, or anxiety. Room for improvement was pointed out after 117 examinations concerning given information (n = 73), communication and sound system (n = 35), or nursing care (n = 15).Subjectively reported effects occur in actively shielded 7T MRI and include physiological responses and individual psychological issues. Although leaving room for improvement, few subjects experienced these effects being so uncomfortable that they would lead to aversion to future UHF examinations.1 TECHNICAL EFFICACY: Stage 5.
  •  
20.
  • Hedström, Erik, et al. (författare)
  • Effects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance
  • 2010
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Quantitative blood flow and aspects of regional myocardial function such as myocardial displacement and strain can be measured using phase-contrast cardiovascular magnetic resonance (PC-CMR). Since a gadolinium-based contrast agent is often used to measure myocardial infarct size, we sought to determine whether the contrast agent affects measurements of aortic flow and myocardial displacement and strain. Phase-contrast data pre and post contrast agent was acquired during free breathing using 1.5T PC-CMR. Results: For aortic flow and regional myocardial function 12 and 17 patients were analysed, respectively. The difference pre and post contrast agent was 0.03 +/- 0.16 l/min for cardiac output, and 0.1 +/- 0.5 mm for myocardial displacement. Linear regression for myocardial displacement (MD) after and before contrast agent (CA) showed MDpostCA = 0.95MD(preCA)+0.05 (r = 0.95, p < 0.001). For regional myocardial function, the contrast-to-noise ratios for left ventricular myocardial wall versus left ventricular lumen were pre and post contrast agent administration 7.4 +/- 3.3 and 4.4 +/- 8.9, respectively (p < 0.001). The contrast-to-noise ratios for left ventricular myocardial wall versus surrounding tissue were pre and post contrast agent administration -16.9 +/- 22 and -0.2 +/- 6.3, respectively (p < 0.0001). Conclusions: Quantitative measurements of aortic flow yield equal results both in the absence and presence of gadolinium contrast agent. The total examination time may thereby be reduced when assessing both viability and quantitative flow using PC-CMR, by assessing aortic flow post contrast agent administration. Phase-contrast information for myocardial displacement is also assessable both in the absence and presence of contrast agent. However, delineation of the myocardium may be difficult or impossible post contrast agent due to the lower image contrast. Acquisition of myocardial displacement should therefore be performed pre contrast agent using current PC-CMR sequences.
  •  
21.
  •  
22.
  • Hofman, Mark B.M., et al. (författare)
  • In-vivo validation of interpolation-based phase offset correction in cardiovascular magnetic resonance flow quantification : A multi-vendor, multi-center study
  • 2019
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier studies have shown that this offset error is clinically relevant over different systems, and cannot be removed by protocol optimization. Correction methods using phantom measurements are time consuming, and assume reproducibility of the offsets which is not the case for all systems. An alternative previously published solution is to correct the in-vivo data in post-processing, interpolating the velocity offset from stationary tissue within the field-of-view. This study aims to validate this interpolation-based offset correction in-vivo in a multi-vendor, multi-center setup. Methods: Data from six 1.5 T CMR systems were evaluated, with two systems from each of the three main vendors. At each system aortic and main pulmonary artery 2D flow studies were acquired during routine clinical or research examinations, with an additional phantom measurement using identical acquisition parameters. To verify the phantom acquisition, a region-of-interest (ROI) at stationary tissue in the thorax wall was placed and compared between in-vivo and phantom measurements. Interpolation-based offset correction was performed on the in-vivo data, after manually excluding regions of spatial wraparound. Correction performance of different spatial orders of interpolation planes was evaluated. Results: A total of 126 flow measurements in 82 subjects were included. At the thorax wall the agreement between in-vivo and phantom was - 0.2 ± 0.6 cm/s. Twenty-eight studies were excluded because of a difference at the thorax wall exceeding 0.6 cm/s from the phantom scan, leaving 98. Before correction, the offset at the vessel as assessed in the phantom was - 0.4 ± 1.5 cm/s, which resulted in a - 5 ± 16% error in cardiac output. The optimal order of the interpolation correction plane was 1st order, except for one system at which a 2nd order plane was required. Application of the interpolation-based correction revealed a remaining offset velocity of 0.1 ± 0.5 cm/s and 0 ± 5% error in cardiac output. Conclusions: This study shows that interpolation-based offset correction reduces the offset with comparable efficacy as phantom measurement phase offset correction, without the time penalty imposed by phantom scans. Trial registration: The study was registered in The Netherlands National Trial Register (NTR) under TC 4865. Registered 19 September 2014. Retrospectively registered.
  •  
23.
  • Kanski, Mikael, et al. (författare)
  • Whole-heart four-dimensional flow can be acquired with preserved quality without respiratory gating, facilitating clinical use : A head-to-head comparison
  • 2015
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Respiratory gating is often used in 4D-flow acquisition to reduce motion artifacts. However, gating increases scan time. The aim of this study was to investigate if respiratory gating can be excluded from 4D flow acquisitions without affecting quantitative intracardiac parameters. Methods: Eight volunteers underwent CMR at 1.5 T with a 5-channel coil (5ch). Imaging included 2D flow measurements and whole-heart 4D flow with and without respiratory gating (Resp(+), Resp(-)). Stroke volume (SV), particle-trace volumes, kinetic energy, and vortex-ring volume were obtained from 4D flow-data. These parameters were compared between 5ch Resp(+) and 5ch Resp(-). In addition, 20 patients with heart failure were scanned using a 32-channel coil (32ch), and particle-trace volumes were compared to planimetric SV. Paired comparisons were performed using Wilcoxon's test and correlation analysis using Pearson r. Agreement was assessed as bias ± SD. Results: Stroke volume from 4D flow was lower compared to 2D flow both with and without respiratory gating (5ch Resp(+) 88 ± 18 vs 97 ± 24.0, p = 0.001; 5ch Resp(-) 86 ± 16 vs 97.1 ± 22.7, p < 0.01). There was a good correlation between Resp(+) and Resp(-) for particle-trace derived volumes (R2 = 0.82, 0.2 ± 9.4 ml), mean kinetic energy (R2 = 0.86, 0.07 ± 0.21 mJ), peak kinetic energy (R2 = 0.88, 0.14 ± 0.77 mJ), and vortex-ring volume (R2 = 0.70, -2.5 ± 9.4 ml). Furthermore, good correlation was found between particle-trace volume and planimetric SV in patients for 32ch Resp(-) (R2 = 0.62, -4.2 ± 17.6 ml) and in healthy volunteers for 5ch Resp(+) (R2 = 0.89, -11 ± 7 ml), and 5ch Resp(-) (R2 = 0.93, -7.5 ± 5.4 ml), Average scan duration for Resp(-) was shorter compared to Resp(+) (27 ± 9 min vs 61 ± 19 min, p < 0.05). Conclusions: Whole-heart 4D flow can be acquired with preserved quantitative results without respiratory gating, facilitating clinical use.
  •  
24.
  • Knutsson, Linda, et al. (författare)
  • Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling.
  • 2010
  • Ingår i: Magnetic Resonance Imaging. - : Elsevier BV. - 1873-5894 .- 0730-725X. ; 28:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To compare absolute cerebral blood flow (CBF) estimates obtained by model-free arterial spin labeling (ASL) and dynamic susceptibility contrast MRI (DSC-MRI), corrected for partial volume effects (PVEs). METHODS: CBF was measured using DSC-MRI and model-free ASL (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) at 3 T in 15 subjects with brain tumor, and the two modalities were compared with regard to CBF estimates in normal gray matter (GM) and DSC-to-ASL CBF ratios in selected tumor regions. The DSC-MRI CBF maps were calculated using a global arterial input function (AIF) from the sylvian-fissure region, but, in order to minimize PVEs, the AIF time integral was rescaled by a venous output function time integral obtained from the sagittal sinus. RESULTS: In GM, the average DSC-MRI CBF estimate was 150+/-45 ml/(min 100 g) (mean+/-SD) while the corresponding ASL CBF was 44+/-10 ml/(min 100 g). The linear correlation between GM CBF estimates obtained by DSC-MRI and ASL was r=.89, and observed DSC-to-ASL CBF ratios differed by less than 3% between GM and tumor regions. CONCLUSIONS: A satisfactory positive linear correlation between the CBF estimates obtained by model-free ASL and DSC-MRI was observed, and DSC-to-ASL CBF ratios showed no obvious tissue dependence.
  •  
25.
  • Knutsson, Linda, et al. (författare)
  • Arterial Input Functions and Tissue Response Curves in Dynamic Glucose-Enhanced (DGE) Imaging: Comparison Between glucoCEST and Blood Glucose Sampling in Humans
  • 2018
  • Ingår i: Tomography : a journal for imaging research. - : MDPI AG. - 2379-1381. ; 4:4, s. 164-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic glucose-enhanced (DGE) imaging uses chemical exchange saturation transfer magnetic resonance imaging to retrieve information about the microcirculation using infusion of a natural sugar (D-glucose). However, this new approach is not yet well understood with respect to the dynamic tissue response. DGE time curves for arteries, normal brain tissue, and cerebrospinal fluid (CSF) were analyzed in healthy volunteers and compared with the time dependence of sampled venous plasma blood glucose levels. The arterial response curves (arterial input function [AIF]) compared reasonably well in shape with the time curves of the sampled glucose levels but could also differ substantially. The brain tissue response curves showed mainly negative responses with a peak intensity that was of the order of 10 times smaller than the AIF peak and a shape that was susceptible to both noise and partial volume effects with CSF, attributed to the low contrast-to-noise ratio. The CSF response curves showed a rather large and steady increase of the glucose uptake during the scan, due to the rapid uptake of D-glucose in CSF. Importantly, and contrary to gadolinium studies, the curves differed substantially among volunteers, which was interpreted to be caused by variations in insulin response. In conclusion, while AIFs and tissue response curves can be measured in DGE experiments,partial volume effects, low concentration of D-glucose in tissue, and osmolality effects between tissue and blood may prohibit quantification of normal tissue perfusion parameters. However, separation of tumor responses from normal tissue responses would most likely be feasible.
  •  
26.
  • Knutsson, Linda, et al. (författare)
  • Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion.
  • 2014
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 72:4, s. 996-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial partial-volume effects (PVEs) often hamper reproducible absolute quantification of cerebral blood flow (CBF) and cerebral blood volume (CBV) obtained by dynamic susceptibility contrast MRI (DSC-MRI). The aim of this study was to examine whether arterial PVEs in DSC-MRI data can be minimized by rescaling the arterial input function (AIF) using a sagittal-sinus venous output function obtained following a prebolus administration of a low dose of contrast agent.
  •  
27.
  •  
28.
  • Kylkilahti, Tekla Maria, et al. (författare)
  • Achieving brain clearance and preventing neurodegenerative diseases—A glymphatic perspective
  • 2021
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 0271-678X. ; 41:9, s. 2137-2149
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle’s control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
  •  
29.
  •  
30.
  • Markenroth Bloch, Karin, et al. (författare)
  • Benefits, Challenges and Applications of Ultra-High Field Magnetic Resonance
  • 2021. - 1
  • Ingår i: Advanced Neuro MR Techniques and Applications. - 9780128224793 - 9780128224953 ; 4, s. 533-571
  • Bokkapitel (refereegranskat)abstract
    • Human ultra-high field (UHF) MR at 7T and above has been on a rapid rise since the first installations in the 1990s, motivated by the opportunities created by SNR gains and contrast changes. Research efforts were for long focused mainly on technological developments to cope with the challenges posed by UHF. This has brought 7T MR neuroimaging to maturity and into an application dominated realm, further accelerated by the availability of clinically certified commercial 7T systems. This chapter aims to give an overview of UHF MR in a neuroimaging context by first providing an overview of the basic physical motivations for going to higher fields. It will then describe the challenges and limitations of working at higher field strengths, and outline some of the currently available solutions. This chapter also provides a discussion of the potentials of UHF by highlighting some of the neuro applications that benefit from UHF.
  •  
31.
  • Markenroth Bloch, Karin, et al. (författare)
  • Doppler ultrasound cardiac gating of intracranial flow at 7T
  • 2020
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ultra-high field magnetic resonance imaging (MR) may be used to improve intracranial blood flow measurements. However, standard cardiac synchronization methods tend to fail at ultra-high field MR. Therefore, this study aims to investigate an alternative synchronization technique using Doppler ultrasound. Methods: Healthy subjects (n = 9) were examined with 7T MR. Flow was measured in the M1-branch of the middle cerebral artery (MCA) and in the cerebral aqueduct (CA) using through-plane phase contrast (2D flow). Flow in the circle of Willis was measured with three-dimensional, three-directional phase contrast (4D flow). Scans were gated with Doppler ultrasound (DUS) and electrocardiogram (ECG), and pulse oximetry data (POX) was collected simultaneously. False negative and false positive trigger events were counted for ECG, DUS and POX, and quantitative flow measures were compared. Results: There were fewer false positive triggers for DUS compared to ECG (5.3 ± 11 vs. 25 ± 31, p = 0.031), while no other measured parameters differed significantly. Net blood flow in M1 was similar between DUS and ECG for 2D flow (1.5 ± 0.39 vs. 1.6 ± 0.41, bias ± 1.96SD: − 0.021 ± 0.36) and 4D flow (1.8 ± 0.48 vs. 9 ± 0.59, bias ± 1.96SD: − 0.086 ± 0.57 ml). Net CSF flow per heart beat in the CA was also similar for DUS and ECG (3.6 ± 2.1 vs. 3.0 ± 5.8, bias ± 1.96SD: 0.61 ± 13.6 μl). Conclusion: Gating with DUS produced fewer false trigger events than using ECG, with similar quantitative flow values. DUS gating is a promising technique for cardiac synchronization at 7T.
  •  
32.
  • Markenroth Bloch, Karin, et al. (författare)
  • Investigation of cerebrospinal fluid flow in the cerebral aqueduct using high-resolution phase contrast measurements at 7T MRI
  • 2018
  • Ingår i: Acta Radiologica. - : SAGE Publications. - 0284-1851 .- 1600-0455. ; 59:8, s. 988-996
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The cerebral aqueduct is a central conduit for cerebrospinal fluid (CSF), and non-invasive quantification of CSF flow in the aqueduct may be an important tool for diagnosis and follow-up of treatment. Magnetic resonance (MR) methods at clinical field strengths are limited by low spatial resolution. Purpose: To investigate the feasibility of high-resolution through-plane MR flow measurements (2D-PC) in the cerebral aqueduct at high field strength (7T). Material and Methods: 2D-PC measurements in the aqueduct were performed in nine healthy individuals at 7T. Measurement accuracy was determined using a phantom. Aqueduct area, mean velocity, maximum velocity, minimum velocity, net flow, and mean flow were determined using in-plane resolutions 0.8 × 0.8, 0.5 × 0.5, 0.3 × 0.3, and 0.2 × 0.2 mm2. Feasibility criteria were defined based on scan time and spatial and temporal resolution. Results: Phantom validation of 2D-PC MR showed good accuracy. In vivo, stroke volume was −8.2 ± 4.4, −4.7 ± 2.8, −6.0 ± 3.8, and −3.7 ± 2.1 µL for 0.8 × 0.8, 0.5 × 0.5, 0.3 × 0.3, and 0.2 × 0.2 mm2, respectively. The scan with 0.3 × 0.3 mm2 resolution fulfilled the feasibility criteria for a wide range of heart rates and aqueduct diameters. Conclusion: 7T MR enables non-invasive quantification of CSF flow and velocity in the cerebral aqueduct with high spatial resolution.
  •  
33.
  • Markenroth Bloch, Karin, et al. (författare)
  • Magnetisk Resonanstomografi
  • 2011. - 3
  • Ingår i: Klinisk fysiologi. - 9789147103638 ; , s. 133-142
  • Bokkapitel (populärvet., debatt m.m.)
  •  
34.
  • Markenroth Bloch, Karin, et al. (författare)
  • Quantifying coronary sinus flow and global LV perfusion at 3T
  • 2009
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 9:9, s. 1-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background: Despite the large availability of 3T MR scanners and the potential of high field imaging, this technical platform has yet to prove its usefulness in the cardiac MR setting, where 1.5T remains the established standard. Global perfusion of the left ventricle, as well as the coronary flow reserve (CFR), can provide relevant diagnostic information, and MR measurements of these parameters may benefit from increased field strength. Quantitative flow measurements in the coronary sinus (CS) provide one method to nvestigate these parameters. However, the ability of newly developed faster MR sequences to measure coronary flow during a breath-hold at 3T has not been evaluated. Methods: The aim of this work was to measure CS flow using segmented phase contrast MR (PC MR)on a clinical 3T MR scanner. Parallel imaging was employed to reduce the total acquisition time. Global LV perfusion was calculated by dividing CS flow with left ventricular (LV) mass. The repeatability of the method was investigated by measuring the flow three times in each of the twelve volunteers. Phantom experiments were performed to investigate potential error sources. Results: The average CS flow was determined to 88±33 ml/min and the deduced LV perfusion was 0.60±0.22 ml/min·g, in agreement with published values. The repeatability (1-error) of the three repeated measurements in each subject was on average 84%. Conclusions: This work demonstrates that the combination of high field strength (3T), parallel imaging and segmented gradient echo sequences allow for quantification of the CS flow and global perfusion within a breath-hold.
  •  
35.
  • Nilsson, Anders, et al. (författare)
  • Accuracy of four-dimensional phase-contrast velocity mapping for blood flow visualizations: a phantom study.
  • 2013
  • Ingår i: Acta Radiologica. - : SAGE Publications. - 1600-0455 .- 0284-1851. ; 54:6, s. 663-671
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTime-resolved three-dimensional, three-directional phase-contrast magnetic resonance velocity mapping (4D PC-MRI) is a powerful technique to depict dynamic blood flow patterns in the human body. However, the impact of phase background effects on flow visualizations has not been thoroughly studied previously, and it has not yet been experimentally demonstrated to what degree phase offsets affect flow visualizations and create errors such as inaccurate particle traces.PurposeTo quantify background phase offsets and their subsequent impact on particle trace visualizations in a 4D PC-MRI sequence. Additionally, we sought to investigate to what degree visualization errors are reduced by background phase correction.Material and MethodsA rotating phantom with a known velocity field was used to quantify background phase of 4D PC-MRI sequences accelerated with SENSE as well as different k-t BLAST speed-up factors. The deviation in end positions between particle traces in the measured velocity fields were compared before and after the application of two different phase correction methods.ResultsPhantom measurements revealed background velocity offsets up to 7 cm/s (7% of velocity encoding sensitivity) in the central slice, increasing with distance from the center. Background offsets remained constant with increasing k-t BLAST speed-up factors. End deviations of up to 5.3 mm (1.8 voxels) in the direction perpendicular to the rotating disc were found between particle traces and the seeding plane of the traces. Phase correction by subtraction of the data from the stationary phantom reduced the average deviation by up to 56%, while correcting the data-set with a first-order polynomial fit to stationary regions decreased average deviation up to 78%.ConclusionPathline visualizations can be significantly affected by background phase errors, highlighting the importance of dedicated and robust phase correction methods. Our results show that pathline deviation can be substantial if adequate phase background errors are not minimized.
  •  
36.
  • Nilsson, Anders, et al. (författare)
  • Variable velocity encoding in a three-dimensional, three-directional phase contrast sequence: Evaluation in phantom and volunteers.
  • 2012
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1522-2586 .- 1053-1807.
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To evaluate accuracy and noise properties of a novel time-resolved, three-dimensional, three-directional phase contrast sequence with variable velocity encoding (denoted 4D-vPC) on a 3 Tesla MR system, and to investigate potential benefits and limitations of variable velocity encoding with respect to depicting blood flow patterns. MATERIALS AND METHODS: A 4D PC-MRI sequence was modified to allow variable velocity encoding (VENC) over the cardiac cycle in all three velocity directions independently. 4D-PC sequences with constant and variable VENC were compared in a rotating phantom with respect to measured velocities and noise levels. Additionally, comparison of flow patterns in the ascending aorta was performed in six healthy volunteers. RESULTS: Phantom measurements showed a linear relationship between velocity noise and velocity encoding. 4D-vPC MRI presented lower noise levels than 4D-PC both in phantom and in volunteer measurements, in agreement with theory. Volunteer comparisons revealed more consistent and detailed flow patterns in early diastole for the variable VENC sequences. CONCLUSION: Variable velocity encoding offers reduced noise levels compared with sequences with constant velocity encoding by optimizing the velocity-to-noise ratio (VNR) to the hemodynamic properties of the imaged area. Increased VNR ratios could be beneficial for blood flow visualizations of pathology in the cardiac cycle. J. Magn. Reson. Imaging 2012. © 2012 Wiley Periodicals, Inc.
  •  
37.
  •  
38.
  • Nilsson, Christer, et al. (författare)
  • Tracking the neurodegeneration of parkinsonian disorders - A pilot study
  • 2007
  • Ingår i: Neuroradiology. - : Springer Science and Business Media LLC. - 1432-1920 .- 0028-3940. ; 49:2, s. 111-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of the study was to explore the possibilities of using diffusion tensor imaging (DTI) and tractography (DTT) for the differential diagnosis and monitoring of disease progression in idiopathic Parkinson's disease (IPD), compared with the atypical parkinsonian disorders multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A 3.0-T MR scanner was used. DTI was acquired using a single-shot EPI sequence with diffusion encoding in 32 directions and a voxel size of 2×2×2 mm3. DTI data were analysed and DTT was performed using the PRIDE fibre tracking tool supplied by the manufacturer. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) within each tract were determined. DTI and DTT images in patients with moderate to advanced MSA demonstrated degeneration of the middle cerebellar peduncles and pontine crossing tracts, with decreased FA and increased ADC. This accounted for most of the pontine and cerebellar atrophy characteristic of this disease. In contrast, patients with PSP showed a selective degeneration of the superior cerebellar peduncle. Three-dimensional images of whole-brain white matter tracts demonstrated a reduction of cortical projection fibres in all patients with PSP. Visualization of the selective degeneration of individual fibre tracts, using DTI and DTT, adds qualitative data facilitating the differential diagnosis of parkinsonian disorders. Repeated measurements of FA and ADC values in a whole fibre tract might be used for monitoring disease progression and studying the effect of treatment in neuroprotective trials. The results are preliminary considering the small number of subjects in the study. © Springer-Verlag 2007.
  •  
39.
  • Persson, M, et al. (författare)
  • Phase contrast MRI segmentation using multiple cues
  • 2005
  • Ingår i: SSBA Symposium on Image Analysis.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This paper presents a method for three-dimensional (3D) segmentation of blood vessels, using a combination of velocity data and magnitude images obtained using phase contrast MRI. In addition to standard MRI images, phase contrast MRI gives velocity information for blood and tissue. The proposed method uses a variational formulation of the segmentation problem which combines different cues; velocity and magnitude. Experiments on phantom and clinical data support the proposed method.
  •  
40.
  • Ramgren, Birgitta, et al. (författare)
  • 7T magnetic resonance angiographic imaging of basilar artery perforator aneurysms – initial experience of a non-invasive alternative to DSA
  • 2023
  • Ingår i: Interventional Neuroradiology. - 1591-0199.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Perforator aneurysms of the basilar artery (PABA) are rare causes of subarachnoid haemorrhage (SAH) and challenging to diagnose. We present two cases of SAH caused by PABA diagnosed by cone beam computed tomography angiography (CBCTA) and a novel non-invasive method – 7T magnetic resonance imaging (7T MRI). Methods: Two patients with SAH, diagnosed with PABA, were imaged on day 9 and 13 after onset, respectively, with CBCTA and 7T MR angiography (MRA) performed on the day after and at follow-up at 3 months. Results: All four 7T MRI examinations in the two patients were technically successful with fully diagnostic images. No endovascular treatment was performed and control with 7T MRA at 3 months showed no remaining aneurysms. Conclusion: PABA can be imaged with 7T MRI – a novel non-invasive method, allowing non-invasive follow-up to monitor this rare cause of SAH.
  •  
41.
  • Rolf, Marijn P, et al. (författare)
  • Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - A multi-vendor study
  • 2011
  • Ingår i: JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE. - : Taylor and Francis / BioMed Central. - 1097-6647. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the resulting velocity error in clinical CMR flow measurements in a multi-vendor study. Methods: Nine 1.5T scanners of three different types/vendors were studied. Measurements were performed on a large stationary phantom. Starting from a clinical breath-hold flow protocol, several protocol parameters were varied. Acquisitions were made in three clinically relevant orientations. Additionally, a time delay between the bipolar gradient and read-out, asymmetric versus symmetric velocity encoding, and gradient amplitude and slew rate were studied in adapted sequences as exploratory measurements beyond the protocol. Image analysis determined the worst-case offset for a typical great-vessel flow measurement. Results: The results showed a great variation in offset behavior among scanners (standard deviation among samples of 0.3, 0.4, and 0.9 cm/s for the three different scanner types), even for small changes in the protocol. Considering the absolute values, none of the tested protocol settings consistently reduced the velocity offsets below the critical level of 0.6 cm/s neither for all three orientations nor for all three scanner types. Using multilevel linear model analysis, oblique aortic and pulmonary slices showed systematic higher offsets than the transverse aortic slices (oblique aortic 0.6 cm/s, and pulmonary 1.8 cm/s higher than transverse aortic). The exploratory measurements beyond the protocol yielded some new leads for further sequence development towards reduction of velocity offsets; however those protocols were not always compatible with the time-constraints of breath-hold imaging and flow-related artefacts. Conclusions: This study showed that with current systems there was no generic protocol which resulted into acceptable flow offset values. Protocol optimization would have to be performed on a per scanner and per protocol basis. Proper optimization might make accurate (transverse) aortic flow quantification possible for most scanners. Pulmonary flow quantification would still need further (offline) correction.
  •  
42.
  • Seidemo, Anina, et al. (författare)
  • Tissue response curve shape analysis of dynamic glucose enhanced (DGE) and dynamic contrast enhanced (DCE) MRI in patients with brain tumor
  • 2023
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 36:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic glucose enhanced (DGE) MRI is used to study the signal intensity time course (tissue response curve) after D-glucose injection. D-glucose has potential as a biodegradable alternative or complement to gadolinium-based contrast agents, with DGE being comparable to dynamic contrast enhanced (DCE) MRI. However, the tissue uptake kinetics as well as the detection methods of DGE differ from DCE, and it is relevant to compare these techniques in terms of spatiotemporal enhancement patterns. This study aims to develop a DGE analysis method based on tissue response curve shapes, and to investigate whether DGE MRI provides similar or complementary information to DCE MRI. Eleven patients with suspected gliomas were studied. Tissue response curves were measured for DGE and DCE MRI at 7 tesla and the area under curve (AUC) was assessed. Seven types of response curve shapes were postulated and subsequently identified by deep learning to create color-coded “curve maps” showing the spatial distribution of different curve types. DGE AUC values were significantly higher in lesions than in normal tissue (p
  •  
43.
  • Truong, My, et al. (författare)
  • Subacute vessel wall imaging at 7-T MRI in post-thrombectomy stroke patients
  • 2019
  • Ingår i: Neuroradiology. - : Springer Science and Business Media LLC. - 1432-1920 .- 0028-3940. ; 61:10, s. 1145-1153
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeReports from 3-T vessel wall MRI imaging have shown contrast enhancement following thrombectomy for acute stroke, suggesting potential intimal damage. Comparisons have shown higher SNR and more lesions detected by vessel wall imaging when using 7 T compared with 3 T. The aim of this study was to investigate the vessel walls after stent retriever thrombectomy using high-resolution vessel wall imaging at 7 T.MethodsSeven patients with acute stroke caused by occlusion of the distal internal carotid artery (T-occlusion), or proximal medial cerebral artery, and treated by stent retriever thrombectomy with complete recanalization were included and examined by 7-T MRI within 2 days. The MRI protocol included a high-resolution black blood sequence with prospective motion correction (iMOCO), acquired before and after contrast injection. Flow measurements were performed in the treated and untreated M1 segments.ResultsAll subjects completed the MRI examination. Image quality was independently rated as excellent by two neuroradiologists for all cases, and the level of motion artifacts did not impair diagnostic quality, despite severe motion in some cases. Contrast enhancement correlated with the deployment location of the stent retrievers. Flow data showed complete restoration of flow after treatment.ConclusionVessel wall imaging with prospective motion correction can be performed in patients following thrombectomy with excellent imaging quality at 7 T. We show that vessel wall contrast enhancement is the normal post-operative state and corresponds to the deployment location of the stent retriever.
  •  
44.
  • Truong, My, et al. (författare)
  • The potential role of T2*-weighted multi-echo data image combination as an imaging marker for intraplaque hemorrhage in carotid plaque imaging
  • 2021
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Carotid atherosclerotic plaques with intraplaque hemorrhage (IPH) are associated with elevated stroke risk. IPH is predominantly imaged based on paramagnetic properties of the upstream hemoglobin degradation product methemoglobin. This is an explorative observational study to test the feasibility of a spoiled gradient echo based T2* weighted MRI sequence (3D MEDIC) for carotid plaque imaging, and to compare signs suggestive of the downstream degradation product hemosiderin on 3D MEDIC with signs of methemoglobin on a T1wBB sequence. Methods: Patients with recent TIA or stroke were selected based on the presence on non-calcified plaque components on CTA to promote an enriched prevalence of IPH in the material. Patients (n = 42) underwent 3T MRI with 3D MEDIC and 2D turbo spin echo T1w black blood (T1wBB). Images were independently evaluated by two neuroradiologists and Cohens Kappa was used for inter-reader agreement for each sequence. Results: The technical feasibility for 3D MEDIC, was 34/42 patients (81%). Non-calcified plaque components with susceptibility effect without simultaneous T1-shortening—a combination suggestive of hemosiderin, was seen in 13/34 of the plaques. An equally large group display elevated T1w signal in combination with signal loss on 3D MEDIC, a combination suggestive of both hemosiderin and methemoglobin. Cohen’s kappa for inter-reader agreement was 0.64 (CI 0.345–0.925) for 3D MEDIC and 0.94 (CI 0.81–1.00) for T1wBB. Conclusions: 3D MEDIC shows signal loss, without elevated T1w signal on T1wBB, in non-calcified tissue in many plaques in this group of patients. If further studies, including histological verification, confirm that the 3D MEDIC susceptibility effect is indeed caused by hemosiderin, 3D MEDIC could aid in the detection of IPH, beyond elevation of T1w signal.
  •  
45.
  • Töger, Johannes, et al. (författare)
  • Blood flow imaging by optimal matching of computational fluid dynamics to 4D-flow data
  • 2020
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 84:4, s. 2231-2245
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Three-dimensional, time-resolved blood flow measurement (4D-flow) is a powerful research and clinical tool, but improved resolution and scan times are needed. Therefore, this study aims to (1) present a postprocessing framework for optimization-driven simulation-based flow imaging, called 4D-flow High-resolution Imaging with a priori Knowledge Incorporating the Navier-Stokes equations and the discontinuous Galerkin method (4D-flow HIKING), (2) investigate the framework in synthetic tests, (3) perform phantom validation using laser particle imaging velocimetry, and (4) demonstrate the use of the framework in vivo. Methods: An optimizing computational fluid dynamics solver including adjoint-based optimization was developed to fit computational fluid dynamics solutions to 4D-flow data. Synthetic tests were performed in 2D, and phantom validation was performed with pulsatile flow. Reference velocity data were acquired using particle imaging velocimetry, and 4D-flow data were acquired at 1.5 T. In vivo testing was performed on intracranial arteries in a healthy volunteer at 7 T, with 2D flow as the reference. Results: Synthetic tests showed low error (0.4%-0.7%). Phantom validation showed improved agreement with laser particle imaging velocimetry compared with input 4D-flow in the horizontal (mean −0.05 vs −1.11 cm/s, P <.001; SD 1.86 vs 4.26 cm/s, P <.001) and vertical directions (mean 0.05 vs −0.04 cm/s, P =.29; SD 1.36 vs 3.95 cm/s, P <.001). In vivo data show a reduction in flow rate error from 14% to 3.5%. Conclusions: Phantom and in vivo results from 4D-flow HIKING show promise for future applications with higher resolution, shorter scan times, and accurate quantification of physiological parameters.
  •  
46.
  • Töger, Johannes, et al. (författare)
  • Real-time imaging of respiratory effects on cerebrospinal fluid flow in small diameter passageways
  • 2022
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 88:2, s. 770-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Respiration-related CSF flow through the cerebral aqueduct may be useful for elucidating physiology and pathophysiology of the glymphatic system, which has been proposed as a mechanism of brain waste clearance. Therefore, we aimed to (1) develop a real-time (CSF) flow imaging method with high spatial and sufficient temporal resolution to capture respiratory effects, (2) validate the method in a phantom setup and numerical simulations, and (3) apply the method in vivo and quantify its repeatability and correlation with different respiratory conditions. Methods: A golden-angle radial flow sequence (reconstructed temporal resolution 168 ms, spatial resolution 0.6 mm) was implemented on a 7T MRI scanner and reconstructed using compressed sensing. A phantom setup mimicked simultaneous cardiac and respiratory flow oscillations. The effect of temporal resolution and vessel diameter was investigated numerically. Healthy volunteers (n = 10) were scanned at four different respiratory conditions, including repeat scans. Results: Phantom data show that the developed sequence accurately quantifies respiratory oscillations (ratio real-time/reference QR = 0.96 ± 0.02), but underestimates the rapid cardiac oscillations (ratio QC = 0.46 ± 0.14). Simulations suggest that QC can be improved by increasing temporal resolution. In vivo repeatability was moderate to very strong for cranial and caudal flow (intraclass correlation coefficient range: 0.55–0.99) and weak to strong for net flow (intraclass correlation coefficient range: 0.48–0.90). Net flow was influenced by respiratory condition (p < 0.01). Conclusions: The presented real-time flow MRI method can quantify respiratory-related variations of CSF flow in the cerebral aqueduct, but it underestimates rapid cardiac oscillations. In vivo, the method showed good repeatability and a relationship between flow and respiration.
  •  
47.
  • Ultra-High Field Neuro MRI
  • 2023. - 1
  • Samlingsverk (redaktörskap) (refereegranskat)abstract
    • Ultra-High Field Neuro MRI is a comprehensive reference and educational resource on the current state of neuroimaging at ultra-high field (UHF), with an emphasis on 7T. Sections cover the MR physics aspects of UHF, including the technical challenges and practical solutions that have enabled the rapid growth of 7T MRI. Individual chapters are dedicated to the different techniques that most strongly benefit from UHF, as well as chapters with a focus on different application areas in anatomical, functional and metabolic imaging. Finally, several chapters highlight the neurological and psychiatric applications for which 7T has shown benefits. The book is aimed at scientists who develop MR technologies and support clinical and neuroscience research, as well as users who want to benefit from UHF neuro MR techniques in their work. It also provides a comprehensive introduction to the field.
  •  
48.
  • van Westen, Danielle, et al. (författare)
  • Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours.
  • 2011
  • Ingår i: Magma. - : Springer Science and Business Media LLC. - 1352-8661. ; 24, s. 211-223
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To compare measurements of the arterial blood volume (aBV), a perfusion parameter calculated from arterial spin labelling (ASL), and cerebral blood volume (CBV), calculated from dynamic susceptibility contrast (DSC) MRI. In the clinic, CBV is used for grading of intracranial tumours. MATERIALS AND METHODS: Estimates of aBV from the model-free ASL technique quantitative STAR labelling of arterial regions (QUASAR) experiment and of DSC-CBV were obtained at 3T in ten patients with eleven tumours (three grade III gliomas, four glioblastomas and four meningiomas, two in one patient). Parametric values of aBV and CBV were determined in the tumour as well as in normal grey matter (GM), and tumour-to-GM aBV and CBV ratios were calculated. RESULTS: In a 4-pixel ROI representing maximal tumour values, the coefficient of determination R (2) was 0.61 for the comparison of ASL-based aBV tumour-to-GM ratios and DSC-MRI-based CBV tumour-to-GM ratios and 0.29 for the comparison of parametric values of ASL-aBV and DSC-CBV, under the assumption of proportionality. Both aBV and CBV showed a non-significant tendency to increase when going from grade III gliomas to glioblastomas to meningiomas. CONCLUSION: These results suggest that measurement of aBV is a potential tool for non-invasive assessment of blood volume in intracranial tumours.
  •  
49.
  • Waiczies, Sonia, et al. (författare)
  • Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla
  • 2021
  • Ingår i: Journal of visualized experiments : JoVE. - : MyJove Corporation. - 1940-087X. ; :168
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall goal of this article is to demonstrate a state-of-the-art ultrahigh field (UHF) magnetic resonance (MR) protocol of the brain at 7.0 Tesla in multiple sclerosis (MS) patients. MS is a chronic inflammatory, demyelinating, neurodegenerative disease that is characterized by white and gray matter lesions. Detection of spatially and temporally disseminated T2-hyperintense lesions by the use of MRI at 1.5 T and 3 T represents a crucial diagnostic tool in clinical practice to establish accurate diagnosis of MS based on the current version of the 2017 McDonald criteria. However, the differentiation of MS lesions from brain white matter lesions of other origins can sometimes be challenging due to their resembling morphology at lower magnetic field strengths (typically 3 T). Ultrahigh field MR (UHF-MR) benefits from increased signal-to-noise ratio and enhanced spatial resolution, both key to superior imaging for more accurate and definitive diagnoses of subtle lesions. Hence, MRI at 7.0 T has shown encouraging results to overcome the challenges of MS differential diagnosis by providing MS-specific neuroimaging markers (e.g., central vein sign, hypointense rim structures and differentiation of MS grey matter lesions). These markers and others can be identified by other MR contrasts other than T1 and T2 (T2*, phase, diffusion) and substantially improve the differentiation of MS lesions from those occurring in other neuroinflammatory conditions such as neuromyelitis optica and Susac syndrome. In this article, we describe our current technical approach to study cerebral white and grey matter lesions in MS patients at 7.0 T using different MR acquisition methods. The up-to-date protocol includes the preparation of the MR setup including the radio-frequency coils customized for UHF-MR, standardized screening, safety and interview procedures with MS patients, patient positioning in the MR scanner and acquisition of dedicated brain scans tailored for examining MS.
  •  
50.
  • Wirestam, Ronnie, et al. (författare)
  • Cerebral perfusion information obtained by dynamic contrast-enhanced phase-shift magnetic resonance imaging: comparison with model-free arterial spin labelling.
  • 2010
  • Ingår i: Clinical Physiology and Functional Imaging. - 1475-0961. ; 30:5, s. 375-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary Phase-shift time curves following a bolus injection of gadolinium contrast agent were registered for grey-matter regions and large vessels in 14 subjects. Deconvolving a tissue phase-shift curve with a phase-based arterial input function resulted in a tissue residue function R(t). The peak value of R(t) provided a relative cerebral blood flow (CBF) index, while the area-to-height ratio of R(t) provided quantitative mean transit time (MTT). For comparison, quantitative CBF values in grey matter were acquired using model-free arterial spin labelling (ASL). The phase-based relative CBF estimates showed good linear correlation with ASL-based CBF (r = 0.82). Grey-matter MTT was 4.9 +/- 1.1 s (mean +/- SD).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 51
Typ av publikation
tidskriftsartikel (42)
bokkapitel (5)
konferensbidrag (3)
samlingsverk (redaktörskap) (1)
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Markenroth Bloch, Ka ... (47)
Ståhlberg, Freddy (15)
Arheden, Håkan (10)
Töger, Johannes (10)
Carlsson, Marcus (8)
Björkman-Burtscher, ... (8)
visa fler...
Wirestam, Ronnie (8)
Knutsson, Linda (8)
Heiberg, Einar (7)
van Westen, Danielle (6)
Nilsson, Markus (4)
Bloch, Karin Markenr ... (4)
Jonson, Björn (3)
Nilsson, Anders (3)
Sundgren, Pia C. (3)
Ahlgren, André (3)
Lind, Emelie (3)
Kanski, Mikael (3)
Wasselius, Johan (3)
Andersen, Mads (3)
Kilner, Philip J (3)
Bergvall, Erik (3)
Olsrud, Johan (3)
van Osch, Matthias J ... (3)
Marklund, Niklas (2)
Svensson, Jonas (2)
Helms, Gunther (2)
Siemund, Roger (2)
Borge, M. J. G. (2)
Gard, Anna (2)
Mukha, I. (2)
Axelsson, L. (2)
Sorlin, O. (2)
Björkman-Burtscher, ... (2)
Hedström, Erik (2)
Lewitowicz, M. (2)
Steding-Ehrenborg, K ... (2)
Lätt, Jimmy (2)
Grevy, S. (2)
Orr, N. A. (2)
Saint-Laurent, M. G. (2)
Martel, I.I. (2)
Bergmann, U. C. (2)
Lundgaard, Iben (2)
Sparr, Gunnar (2)
Owman, Titti (2)
Van Zijl, Peter C M (2)
van Rossum, Albert C ... (2)
Xu, Xiang (2)
Kornaropoulos, Evgen ... (2)
visa färre...
Lärosäte
Lunds universitet (49)
Göteborgs universitet (7)
Luleå tekniska universitet (2)
Umeå universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (50)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (49)
Naturvetenskap (7)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy